Reutilization Potential of Fine Fraction from Construction and Demolition Waste in the Circular Economy

Authors

  • Ville Lahtela

    1. SCI-MAT Research Platform, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland; 2. Fiber Composite Laboratory, Lappeenranta-Lahti University of Technology LUT, 53850 Lappeenranta, Finland

  • Ida Rasilainen

    Fiber Composite Laboratory, Lappeenranta-Lahti University of Technology LUT, 53850  Lappeenranta, Finland

  • Timo Kärki

    Fiber Composite Laboratory, Lappeenranta-Lahti University of Technology LUT, 53850  Lappeenranta, Finland

DOI:

https://doi.org/10.30564/jbms.v7i2.9786
Received: 29 April 2025 | Revised: 23 May 2025 | Accepted: 29 May 2025 | Published Online: 13 June 2025

Abstract

Fine fraction waste is a remarkable secondary material without a rational utilization objective, demonstrating a real research gap for its study. The fine fraction can constitute up to several dozen percent of the total waste volume, representing a significant amount of material, but the nature of material can be partly complex and heterogeneous, restricting its utilization. Therefore, this study investigated the availability of fine fraction waste and its physical features, such as particle size, shape, and elemental composition. The fine fraction constituted 20–40% of construction and demolition waste and 25% of mechanical treatment of the waste, with particle sizes ranging from 0–15 mm. The novelty results from the study showed that the choice of treatment method could modify the particle size distribution and aspect ratio, and that no significant concentrations of harmful substances were found. Various scenarios of fine fraction availability were created, indicating its potential as a raw material in low-population areas. Because rational solutions for the fine fraction are lacking, novel innovations are needed for societies to take steps to approach the targets for a circular economy. This study shows that new approaches have the potential to enable the use of fine fraction waste as a partial replacement for other materials, for example, the use of fine fraction as a substitute for cementitious materials that can decrease emissions remarkably.

Keywords:

Circular Economy; Construction and Demolition Waste (CDW); Fine Fraction; Separation

References

[1] Jin, R., Yuan, H., Chen, Q., 2019. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation & Recycling. 140, 175‒188. DOI: https://doi.org/10.1016/j.resconrec.2018.09.029

[2] Mosche-Schimek, J., Kapser, T., Huber-Humer, M., 2023. Critical review of the recovery rates of construction and demolition waste in the European Union – An analysis of influencing factors in selected EU countries. Waste Management. 167, 150‒164. DOI: https://doi.org/10.1016/j.wasman.2023.05.020

[3] Lopez Ruiz, L.A., Ramon, X.R., Domingo, S.G., 2020. The circular economy in the construction and demolition waste sector e A review and an integrative model approach. Journal of Cleaner Production. 248, 119238. DOI: https://doi.org/10.1016/j.jclepro.2019.119238

[4] Zhang, C., Hu, M., Di Maio, F., et al., 2022. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of the Total Environment. 803, 149892. DOI: https://doi.org/10.1016/j.scitotenv.2021.149892

[5] Kabirifar, K., Mojtahedi, M., Wang, C., et al., 2020. Construction and demolition waste management contributing factors coupled with reduce, reuse, and recycle strategies for effective waste management: A review. Journal of Cleaner Production. 263, 121265. DOI: https://doi.org/10.1016/j.jclepro.2020.121265

[6] Dahlbo, H., Bacher, J., Lahtinen, K., et al., 2015. Construction and demolition waste management - a holistic evaluation of environmental performance. Journal of Cleaner Production. 107, 333‒341. DOI: http://dx.doi.org/10.1016/j.jclepro.2015.02.073

[7] Simion, I.M., Fortuna, M.E., Bonoli, A., et al., 2013. Comparing environmental impacts of natural inert and recycled construction and demolition waste processing using LCA. Journal of Environmental Engineering and Landscape Management. 21, 273‒287. DOI: https://doi.org/10.3846/16486897.2013.852558

[8] Vossberg, C., Mason-Jones, K., Cohen, B., 2014. An energetic life cycle assessment of C&D waste and container glass recycling in Cape Town, South Africa. Resources, Conservation & Recycling. 88, 39‒49. DOI: http://dx.doi.org/10.1016/j.resconrec.2014.04.009

[9] Oliveira, T.C.F., Dezen, B.G.S., Possan, E., 2020. Use of concrete fine fraction waste as a replacement of Portland cement. Journal of Cleaner Production. 273, 123126. DOI: https://doi.org/10.1016/j.jclepro.2020.123126

[10] Scrivener, K., Martirena, F., Bishnoi, S., et al., 2018. Calcinated clay limestone cements (LC3). Cement and Concrete Research. 114, 49‒56. DOI: https://doi.org/10.1016/j.cemconres.2017.08.017

[11] Bourtsalas, A., Vandeperre, L.J., Grimes, S.M., et al., 2015. Production of pyroxene ceramics from the fine fraction of incinerator bottom ash. Waste Management. 45, 217‒225. DOI: http://dx.doi.org/10.1016/j.wasman.2015.02.016

[12] Frías, M., de la Villa, R.V., Martínez-Ramírez, S., et al.,2020. Multi-Technique Characterization of a Fine Fraction of CDW and Assessment of Reactivity in a CDW/Lime System. Minerals. 10, 590. DOI: https://doi.org/ 10.3390/min10070590

[13] Caetano, J.A., Schalch, V., Pablos, J.M., 2020. Characterization and recycling of the fine fraction of automotive shredder residue (ASR) for concrete paving blocks production. Clean Technologies and Environmental Policy. 22, 835‒847. DOI: https://doi.org/10.1007/s10098-020-01825-y

[14] Martins, I., Müller, A., di Maio, A., et al., 2013. Use of Fine Fraction. In. Vázquez, E. (eds.) Progress of Recycling in the Built Environment, Springer Dordrecht: Dordrecht, The Netherlands. pp. 195‒227.

[15] Correia, N.S., Caldas, R.C.S., Oluremi, J.R., 2020. Feasibility of using CDW fine fraction and bentonite mixtures as alternative landfill barrier material. Journal of Material Cycles and Waste Management. 22, 1877‒1886. DOI: https://doi.org/10.1007/s10163-020-01075-6

[16] López-Uceda, A., Galvín, A.P., Ayuso, J., et al., 2018. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste. Environmental Science and Pollution Research. 25, 36024‒36034. DOI: https://doi.org/10.1007/s11356-018-1703-1

[17] Mönkäre, T., Palmroth, M.R.T., Sormunen, K., et al., 2019. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure. Waste Management. 87, 464‒471. DOI: https://doi.org/10.1016/j.wasman.2019.02.032

[18] Jani, Y., Kaczala, F., Marchand, C., et al., 2016. Characterisation of excavated fraction and waste composition from a Swedish landfill. Waste Management and Research. 34, 1292‒1299. DOI: https://doi.org/10.1177/0734242X16670000

[19] Mönkäre, T.J., Palmroth, M.R.T., Rintala, J.A., 2016. Characterization of fine fraction mined from two Finnish landfills. Waste Management. 47, 34‒39. DOI: http://dx.doi.org/10.1016/j.wasman.2015.02.034

[20] Singh, A., Chandel, M.K., 2022. Valorization of fine fraction from legacy waste as fired bricks: A step towards circular economy. Journal of Cleaner Production. 331, 129918. DOI: https://doi.org/10.1016/j.jclepro.2021.129918

[21] Naukkarinen, E., 2020. Crushed Tarmac Reuse in Structural Layers. Oulu University of Applied Sciences. Available from: https://urn.fi/URN:NBN:fi:amk-2020060316657 (cited 28 June 2023).

[22] Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Management. 45, 143‒151. DOI: http://dx.doi.org/10.1016/j.wasman.2015.07.042

[23] The Finnish Information Centre of Automobile Sector, 2023. Statistics. Number of certificates of destruction. Available: https://www.aut.fi/en/statistics/statistics_of_scrapped_vehicles/number_of_certificates_of_destructions_yearly, [accessed 10 August 2023].

[24] Environment.fi, 2022. (Joint website of Finland's environmental administration) Romuajoneuvotilastot, päivitetty 15.7.2022. Available from: https://www.ymparisto.fi/fi-fi/kartat_ja_tilastot/jatetilastot/tuottajavastuun_tilastot/Romuajoneuvotilastot (cited 22 December 2022)

[25] Khakpour, H., Ayatollahi, M.R., Akhavan-Safar, A., et al., 2020. Mechanical properties of structural adhesives enhanced with natural date palm tree fibers: Effects of length, density and fiber type. Composite Structures. 237, 111950. DOI: https://doi.org/10.1016/j.compstruct.2020.111950.

[26] Dabade, B.M., Reddy, G.R., Rajesham, S., et al., 2006. Effect of fiber length and fiber weight ratio on tensile properties of sun hemp and palmyra fiber reinforced polyester composites. Journal of Reinforced Plastics and Composites. 25, 1733‒1738. DOI: https://doi.org/ 10.1177/0731684406068418

[27] Kaartinen, T., Sormunen, K., Rintala, J., 2013. Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. Journal of Cleaner Production. 55, 56‒66. DOI: http://dx.doi.org/10.1016/j.jclepro.2013.02.036

[28] Nasrullah, M., Vainikka, P., Hannula, J., et al., 2014. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste. Waste Management. 34, 2163‒2170. DOI: http://dx.doi.org/10.1016/j.wasman.2014.06.009

[29] Laine-Ylijoki, J., Castelli-Rüdenhausen, M., Kaartinen, T., et al., 2018. Report on the situation of the treatment capacity of certain wastes and rejects and the market of some waste-based materials in Finland.

[30] Sormunen, L.A., Rantsi, R., 2015. To fractionate municipal solid waste incineration bottom ash: Key for utilisation? Waste Management and Research. 33, 995‒1004. DOI: https://doi.org/ 10.1177/0734242X15600052

[31] Yao, Z.T., Ji, X.S., Sarker, P.K., et al., 2015. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews. 141, 105‒121. DOI: http://dx.doi.org/10.1016/j.earscirev.2014.11.016

[32] Arnkil, N., Joensuu, S., Kauppila, M., et al., 2020. Tuhka osana kestävää liiketoimintaa – Opas tuhkan tuottajille ja käyttäjille. Tapion raportteja 42. Tapio Oy: Helsinki, Finland.

[33] Dindi, A., Quang, D.V., Vega, L.F., et al., 2019. Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization. 29, 82‒102. DOI: https://doi.org/10.1016/j.jcou.2018.11.011

[34] Jones, P.T., Geysen, D., Tielemans, Y., et al., 2013. Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production. 55, 45‒55. DOI: https://doi.org/10.1016/j.jclepro.2012.05.021

[35] Assaad, J.J., Mardani, A. 2023. Limestone replacements by fine crushed concrete and ceramic wastes during the production of Portland cement. Journal of Sustainable Cement-Based Materials. 12, 1447‒1459. DOI: https://doi.org/10.1080/21650373.2023.2225189

Downloads

How to Cite

Ville Lahtela, Rasilainen, I., & Kärki, T. (2025). Reutilization Potential of Fine Fraction from Construction and Demolition Waste in the Circular Economy. Journal of Building Material Science, 7(2), 193–203. https://doi.org/10.30564/jbms.v7i2.9786

Issue

Article Type

Article