Bonding, Structure and Uses of Metals


  • Peter F. Lang Birkbeck College (University of London), Malet Street, London, UK



This work briefly describes some of the different features of groups ofmetals. It highlights recent progress in research into metals. It details thestructures and defects in solid metals. The common theories of metalsincluding the free electron theory, band theory, the ions in a sea ofelectrons model and the soft sphere model are discussed and their meritsare considered. It describes distinctions between the bonding in metalsand inter-metallic compounds. It shows the influence of bonding on theproperties of metals and alloys and provides a summary of tradition andnewer uses of metals.


Metals; Alloys; Inter-metallic compounds; Bonding strucuture


[1] Rudgley, R., 1998. Lost civilizations of the Stone Age, Arrow Books: London, UK. pp. 129.

[2] Wright, R.P., 2010. The Ancient Indus, C.U.P.: New York, USA. pp. 196.

[3] Berger, D., et al., 2019. Isotope systematic and chemical composition of tin ingots from Mochlos (Crete) and other late Bronze Age sites in the eastern Mediterranean Sea: an ultimate key to tin provenance? PlosOne. 14(6), e0218326.

[4] Sowerby, R., 1995. The Greeks, Routledge: London, UK. pp. 1-29.

[5] Price, S., Thonemann, P., 2010. The birth of Classical Europe, Penguin: London, UK. pp. 46-48, 62-71.

[6] Brun, E., Cotte, M., Wright, J., et al., 2016. Revealing metallic ink in Herculaneum papyri. Proceedings of the National Academy of Science. 113(4), 201519958.

[7] Rumble, J. (ed.), 2021. CRC Handbook for Chemistry and Physics 102nd edn, CRC Press: Boca Raton, USA. section 4 and section 11.

[8] Henderson, W., 2000. Main group chemistry, RSC: London, UK. pp. 59.

[9] Jones, C.J., 2001. d- and f- block chemistry, RSC: London, UK.

[10] Smartt, S.J., 2017. A kilonova as the electromagnetic counterpart to a gravitational wave source. Nature. 551, 75-79.

[11] Tissot, F.L.H., Dauphas, N., Grossman, L., 2016. Origin of uranium isotope variations in early solar nebula condensates. Science Advances. 2, 1501400.

[12] Schmidt, B., Sonnenberg, K., Steinhauer, S., et al., 2019. From polyhalides to polypseudohalides: Chemistry based on cyanogens bromide. Angewandte Chemie. 58(30), 10340-10344.

[13] The Joint Formulary Committee, 2021. British National Formulary 80, Pharmaceutical Press: London, UK. pp. 972, 1154, 1352.

[14] Frei, A., Zuegg, J., Elliott, A.G., et al., 2020. Metal complexes as a promising source of new antibiotics. Chemical Science. 11, 2627.

[15] Everett, J., Lermyte, F., Brooks, J., et al., 2021. Biogenic metallic elements in the human brain? Science Advances. 7(24), 6707.

[16] Graziano, B.J., Scott, T.R., Vollmer, M.V., et al., 2022. One-electron bonds in copper-aluminum and copper-gallium complexes. Chemical Science. 13, 6525-6531.

[17] Bag, P., Porzelt, A., Altmann, P.J., et al., 2017. A stable neutral compound with an aluminum-aluminum double bond. Journal of the American Chemical Society. 139(41), 14384-14387.

[18] Kong, R.Y., Crimmin, M.R., 2021. Chemoselective C-C σ bond activation of the most stable ring in biphenylene. Angewandte Chemie. 60(5), 2619-2623.

[19] Polinski, M., 2014. Unusual structure, bonding and properties of a californium borate. Nature Chemistry. 6, 387-392.

[20] Du, J.Zh., Seed, J.A., Berryman, V.E.J., et al., 2021. Exceptional uranium (VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nature Communication. 12, 5649.

[21] Dutkiewicz, M.S., Goodwin, C.A.P., Perfetti, M., et al., 2022. A terminal neptunium (V)-mono(oxo) complex. Nature Chemistry. 14, 342-349.

[22] Niinomi, M., 2003. Recent research and development in titanium alloys for biomedical applications and health care goods. Science and Technology of Advanced Materials. 4(5), 445.

[23] Wang, X.J., Xu, D.K., Wu, X.B., et al., 2018. What is going in magnesium alloys? Journal of Materiel Science & Technology. 34(2), 245-247.

[24] You, S., Huang, Y., Kainer, K.U., 2017. Recent research and developments on wrought magnesium alloys. Journal of Magnesium and Alloys. 5(3), 239- 253.

[25] Pereira, G.S., et al., 2022. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43Mg alloy. Corrosion Science. 206, 110527.

[26] Lagoudas, D.C. (ed.), 2008. Shape memory alloys – modeling and engineering applications, Springer: New York, USA.

[27] Hart, G.L.W., 2021. Machine learning for alloys. Nature Reviews Materials. 6, 730-755.

[28] Moore, W.J., 1972. Physical Chemistry 5th edn., Longman: London, UK. pp. 880.

[29] Drude, P., 1900. To the electron theory of metals that the electricity conduction. Annals of Physics. 306, 566-613. (In German)

[30] Ashcroft, A.N., Mermin, N.D., 1976. Solid State Physics, Harcourt College Publishers: Fort Worth, USA. pp. 20-21.

[31] Sommerfeld, A., 1928. On the electron theory of metals based on Fermian statistics. Time in Physics. 47, 1-32. (In German)

[32] Lang, P.F., 2021. Fermi energy, metals and the drift velocity of electrons. Chemical Physics Letters. 770, 138447. DOI:

[33] Lang, P.F., 2022. Calculation of the Fermi energy and the bulk modulus of metals. Bulletin of Material Science. 45, 112-119.

[34] Fishband, P.M., Gasiorowicz, S., Thornton, S.T., 1996. Physics for scientists and engineers 2nd edn., Prentice Hall: Upper Saddle River NJ, USA. pp. 735- 737.

[35] Coulson, C.A., 1961. Valence 2nd edn., OUP: Oxford, UK. pp. 322-330.

[36] Matsuoka, T., Shimizu, K., 2009. Direct observation of a pressure-induced metal to semiconductor transition in lithium. Nature. 458, 186-189.

[37] Ma, Y., Eremets, M., Oganov, A.R., et. al., 2009. Transparent dense sodium. Nature. 458, 182-185.

[38] Lang, P.F., 2018. Is a metal ions in a sea of electrons. Journal of Chemical Education. 95, 1787-1793.

[39] Lang, P.F., Smith, B.C., 2010. Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. Dalton Transactions. 39, 7786-7791.

[40] Lang, P.F., Smith, B.C., 2014. Electronegativity effects and single covalent bond lengths of molecules in the gas phase. Dalton Transactions. 43, 8016-8025.

[41] Lang, P.F., Smith, B.C., 2015. Metallic structure and bonding. World Journal of Chemical Education. 3(2), 30-35.

[42] Donohue, J., 1974. The Structures of the Elements, Wiley: New York, USA.

[43] Donnay, J.D., Ondik, H.M., (ed), 1973. Crystal Data Determinative Tables 3rd edn., United States Department of Commerce, National Bureau of Standards and Joint Committee on Powder Diffraction Standards: Washington DC, USA. 2.

[44] Ondik, H.M., Mighell, A.D., 1978. Crystal Data Determinative Tables 3rd edn., United States Department of Commerce, National Bureau of Standards and Joint Committee on Powder Diffraction Standards: Washington DC, USA. 4.

[45] Lang, P.F., 2019. Applying the soft sphere model to improve the understanding of bonding in transition metals. Heliyon. e03310. DOI: https://www.doi.10.1016/j.heliyon.2019.e03110

[46] Cotton, F.A., 1970. Chemical Applications of Group Theory 2nd edn., Wiley: New York,USA. pp. 170-177.

[47] Jin, F., Xin, J.P., Guan, R.N., et al., 2021. Stabilizing a three-center single- electron metal-metal bond in a fullerene cage. Chemical Science. 12, 6890-6895.

[48] Lang, P.F., 2017. An investigation into some important properties of transition metals. Chemical Physics Letters. 690, 5-13.

[49] Lang, P.F., Smith, B.C., 2015. An equation to calculate internuclear distances of covalent, ionic and metallic lattices. Physical Chemistry Chemical Physics. 17, 3355-3369.

[50] Addison, W.E., 1967. Structural principles in inorganic chemistry, Longman: London, UK. pp. 76.

[51] Shriver, D.F., Atkins, P.W., Langford, C.H., 1990. Inorganic Chemistry, OUP: Oxford, UK. pp. 558-566.

[52] Liu, Y.J., Han, Y.Zh., Zhang, Z.Y., et al., 2019. Low overpotential water oxidation at neutral pH catalyzed by a copper (II) porphyrin. Chemical Science. 10, 2613-2622.

[53] Yao, S.Y., Zhang, X., Zhou, W., et al., 2017. Atomic layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science. 357(6349), 389-393.

[54] Upham, D.C., Agarwal, V., Khechfe, A., et al., 2017. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science. 358(6385), 917-921.

[55] Rahim, M.A., Tang, J.B., Christofferson, A.J., et al., 2022. Low temperature liquid platinum catalyst. Nature Chemistry. 14, 935-941.

[56] He, T.O., Wang, W.C., Shi, F.L., et al., 2021. Mastering the surface strain of platinum catalysts for efficient electro-catalysis. Nature. 598, 76-81.

[57] Kurogi, T., Won, J., Park, B., et al., 2018. Room temperature olefination of methane with titanium-carbon multiple bonds. Chemical Science. 9, 3376-3385.

[58] Huo, H.H., Gorsline, B.J., Fu, G.C., 2020. Catalyst controlled doubly enamtopconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science. 367(6477), 559-564.

[59] Chen, P., et al., 2016. Multi-metal nanoparticle synthesis. Science. 352(6293), 1565-1569.

[60] Deng, M., Wang, L.Q., Hoeche, D., et al., 2021. Approaching “stainless magnesium” by Ca micro-alloying. Matererial Horizon. 8, 589-596.

[61] Wood, P.A., et al., 2016. Capturing neon- the first experimental structure of neon trapped within a metal-organic environment. Chemical Communications. 52, 10048-10051.

[62] Flint, C.D., Lang, P., 1981. Infrared and visible luminescence of TcX6 2- in cubic crystals. Journal of Luminescence. 24/25, 301-304.

[63] Hoddeson, L., Baym, G., Eckert, M., 1987. The development of the quantum mechanical electron theory ofmetals 1928-1933. Review of Modern Physics. 5991, 287-327.

[64] Ziman, J.M. (ed.), 1971. Physics of Metals Vol. 1 Electrons, CUP: Cambridge, UK.

[65] Hersch, P.B. (ed.), 1976. Physics of Metals Vol. 2 Defects, CUP: Cambridge, UK.

[66] Kittel, C., 2005. Introduction to Solid State Physics 8th edn., Wiley: New York, USA.

[67] Ibach, H., Luth, H., 2009. Solid State Physics 4th edn., Springer: Heidelberg, Germany


How to Cite

Lang, P. F. (2023). Bonding, Structure and Uses of Metals. Journal of Metallic Material Research, 6(1).


Article Type