-
1417
-
1068
-
1037
-
605
-
559
Truth and False-carbon Dioxide Mitigation Technologies
DOI:
https://doi.org/10.30564/nmms.v3i2.3724Abstract
Research progress is required to be enhanced for those storage technologies which store CO2 fast and permanently. However, temporary storage technologies importance cannot be denied to immediately reduce global warming and reduce higher CO2 concentration in the atmosphere. Continuous CO2 storage facilities, semi-batch and batch pilot plants deemed necessary to build for future survival of the earth planet. Membranes can be used to separate CO2 from common flue gases followed by mineral carbonation to convert CO2 into stable carbonates. Modifications in cement industry, coal fired power plants, fertilizer industries and other chemical process industries appears essential.Keywords:
Carbon dioxide storage technologies; Membranes and mineral carbonation; Carbon; Dioxide conversion to urea; Carbon dioxide conversion to chemicals and biochemicals; Mineral carbonation; Polymeric MaterialsReferences
[1] M.I. Rashid, N. Ramzan. Fluid Mechanics and Heat-Transfer Operations Combination Involved in Urea Unit of Fertilizer Complex, Non-Metallic Material Science 1(1) (2019) 5-10.
[2] C. Julcour, F. Bourgeois, B. Bonfils, I. Benhamed, F. Guyot, F. Bodénan, C. Petiot, É. Gaucher, Development of an attrition-leaching hybrid process for direct aqueous mineral carbonation, Chemical Engineering Journal 262 (2015) 716-726.
[3] M.I. Rashid, E. Benhelal, F. Farhang, T.K. Oliver, M.S. Rayson, G.F. Brent, M. Stockenhuber, E.M. Kennedy, Development of Concurrent grinding for application in aqueous mineral carbonation, Journal of Cleaner Production 212 (2019) 151-161.
[4] M.I. Rashid, E. Benhelal, F. Farhang, T.K. Oliver, M. Stockenhuber, E.M. Kennedy, Application of a concurrent grinding technique for two-stage aqueous mineral carbonation, Journal of CO2 Utilization 42 (2020) 101347.
[5] E. Benhelal, M.I. Rashid, M.S. Rayson, T.K. Oliver, G. Brent, M. Stockenhuber, E.M. Kennedy, “ACEME”: Synthesis and characterization of reactive silica residues from two stage mineral carbonation Process, Environmental Progress & Sustainable Energy 38(3) (2019) e13066.
[6] Emad Benhelal, J. Hook, Guangyu Zhao, Muhammad Imran Rashid, Tim Oliver, Mark Rayson, Geoff Brent, Michael Stockenhuber, Eric Kennedy, Insights into chemical stability of Mg-silicates and silica in aqueous systems using 25Mg and 29Si solid-state MAS NMR spectroscopy: Applications for CO2 capture and utilisation, Chemical Engineering Journal (2020).
[7] E. Aghaalipour, A. Akbulut, G. Güllü, Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems, Biochemical Engineering Journal 163 (2020) 107741.
[8] D. Tang, W. Han, P. Li, X. Miao, J. Zhong, CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels, Bioresource Technology 102(3) (2011) 3071-3076.
[9] A. Jafari, F. Esmaeilzadeh, D. Mowla, E. Sadatshojaei, S. Heidari, D.A. Wood, New insights to direct conversion of wet microalgae impregnated with ethanol to biodiesel exploiting extraction with supercritical carbon dioxide, Fuel 285 (2021) 119199.
[10] E. Alper, O. Yuksel Orhan, CO2 utilization: Developments in conversion processes, Petroleum 3(1) (2017) 109-126.
[11] K. Achakzai, S. Khalid, M. Adrees, A. Bibi, S. Ali, R. Nawaz, M. Rizwan, Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan, Journal of Environmental Management 190 (2017) 252-258.
[12] A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods, Journal of CO2 Utilization 48 (2021) 101526.
[13] H. M. Safaa, A.S. Hameed, E. Yousif, M. H. Alotaibi,, M.H. Alotaibi, D.S. Ahmed, G.A. El-Hiti, New Porous Silicon-Containing Organic Polymers: Synthesis and Carbon Dioxide Uptake, Processes 8 (2020).
[14] Ni, Z. L. Liang, Yi, Z., R. Guo, C. Liu, Y. Liu, H. Sun, X. Liu, Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products, Coordination Chemistry Reviews 441 (2021) 213983.
[15] C. Xu, X. Zhang, M.-N. Zhu, L. Zhang, P.-F. Sui, R. Feng, Y. Zhang, J.-L. Luo, Accelerating photoelectric CO2 conversion with a photothermal wavelength-dependent plasmonic local field, Applied Catalysis B: Environmental 298 (2021) 120533.