-
1547
-
1085
-
1082
-
632
-
600
Editorial on Emerging Trends in Polymeric Materials Research and Applications
DOI:
https://doi.org/10.30564/nmms.v5i1.5328Abstract
Polymeric materials especially nanocomposites (Graphene, MXene based) are widely used in food, electronics, biomedical, batteries, energy storage, fuel cells, wastewater treatment, and automotive. Nanocomposites are stronger, lighter, and stiffer and can improve properties such as mechanical strength, electrical conductivity, thermal stability, flame retardancy, surface appearance, optical clarity and chemical resistance. Current research is focusing on nanocomposites applications, CO2 capturing polymers, making polymers degradable especially developing bio composites and green compositeswhich are degradable, use of deep eutectic solvents for biomass pretreatment to manufacture bio composites or green composites and polymeric composites as drilling fluids and their use in developing ceramics and to construct sequence-controlled and complex topological structures through control of polymerization methodologies.
References
[1] Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chemical Reviews. 2020;120(17):9304-9362. doi:10.1021/acs.chemrev.9b00553.
[2] Hassan T, Salam A, Khan A, et al. Functional nanocomposites and their potential applications: A review. Journal of Polymer Research. 2021;28(2):36. doi:10.1007/s10965-021-02408-1.
[3] Muhammed Shameem M, Sasikanth SM, Annamalai R, Ganapathi Raman R. A brief review on polymer nanocomposites and its applications. Materials Today: Proceedings. 2021;45:2536-2539. doi:https://doi.org/10.1016/j.matpr.2020.11.254.
[4] Rashid MI. GHG Emissions and Role of Polymeric Materials in Mitigation. Non-Metallic Material Science. 2022;4(1):1-2.
[5] Luckachan GE, Pillai CKS. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment. 2011;19(3):637-676. doi:10.1007/s10924-011-0317-1.
[6] Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. e-Polymers. 2019;19(1):385-410. doi:doi:10.1515/epoly-2019-0041.
[7] Leo CM, Kennemur JG. A new CAMMP-ing ground for polymers. Nature Synthesis. 2022;1(12):917-918. doi:10.1038/s44160-022-00198-y.
[8] Gao C, Yao M, Li S, Feng P, Peng S, Shuai C. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting. Journal of Advanced Research. 2019;20:91-104. doi:https://doi.org/10.1016/j.jare.2019.06.001.
[9] Kuram E. Advances in development of green composites based on natural fibers: a review. Emergent Materials. 2022;5(3):811-831. doi:10.1007/s42247-021-00279-2.
[10] Das R, Bhattacharjee C. Chapter 4 - Green composites, the next-generation sustainable composite materials: Specific features and applications. In: Altalhi T, Inamuddin, eds. Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier; 2022:55-70.
[11] Ahmad HM, Kamal MS, Al-Harthi MA. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids. Journal of Molecular Liquids. 2018;252:133-143. doi:https://doi.org/10.1016/j.molliq.2017.12.135.
[12] Dai X, Hou C, Xu Z, et al. Entropic Effects in Polymer Nanocomposites. Entropy (Basel, Switzerland). 2019;21(2). doi:10.3390/e21020186.
[13] Omer RM, Al-Tikrity ETB, El-Hiti GA, Alotibi MF, Ahmed DS, Yousif E. Porous Aromatic Melamine Schiff Bases as Highly Efficient Media for Carbon Dioxide Storage. Processes. 2020;8(1):17. https://www.mdpi.com/2227-9717/8/1/17.
[14] Hadi AG, Jawad K, Yousif E, El-Hiti GA, Alotaibi MH, Ahmed DS. Synthesis of Telmisartan Organotin(IV) Complexes and their use as Carbon Dioxide Capture Media. Molecules. 2019;24(8):1631. https://www.mdpi.com/1420-3049/24/8/1631.
[15] Satar HA, Ahmed AA, Yousif E, Ahmed DS, Alotibi MF, El-Hiti GA. Synthesis of Novel Heteroatom-Doped Porous-Organic Polymers as Environmentally Efficient Media for Carbon Dioxide Storage. Applied Sciences. 2019;9(20):4314. https://www.mdpi.com/2076-3417/9/20/4314.
[16] Sulaiman M, Iqbal T, Yasin S, Mahmood H. Study of Nano-Mechanical Performance of Pretreated Natural Fiber in LDPE Composite for Packaging Applications. Materials (Basel, Switzerland). 2020;13(21). doi:10.3390/ma13214977.
[17] Sulaiman M, Iqbal T, Yasin S, Mahmood H, Shakeel A. Fabrication and Nanomechanical Characterization of Thermoplastic Biocomposites Based on Chemically Treated Lignocellulosic Biomass for Surface Engineering Applications. Frontiers in Materials. 2021;8. doi:10.3389/fmats.2021.733109.
[18] Zabihi O, Ahmadi M, Yadav R, et al. Novel Phosphorous-Based Deep Eutectic Solvents for the Production of Recyclable Macadamia Nutshell–Polymer Biocomposites with Improved Mechanical and Fire Safety Performances. ACS Sustainable Chemistry & Engineering. 2021;9(12):4463-4476. doi:10.1021/acssuschemeng.0c08447.
[19] Carrasco-Huertas G, Jiménez-Riobóo RJ, Gutiérrez MC, Ferrer ML, del Monte F. Carbon and carbon composites obtained using deep eutectic solvents and aqueous dilutions thereof. Chemical Communications. 2020;56(25):3592-3604. doi:10.1039/D0CC00681E.
[20] Yang H, Yang L, Guo H, Hu W, Du A. The effect of silica modified by deep eutectic solvents on the properties of nature rubber/silica composites. Journal of Elastomers & Plastics. 2021;54(1):111-122. doi:10.1177/00952443211020051.
[21] Scelsi E, Angelini A, Pastore C. Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass. 2021;1(1):29-59. https://www.mdpi.com/2673-8783/1/1/3.
[22] Ahmad HM, Iqbal T, Kamal MS, Al-Harthi MA. Influence of Hydrophobically Modified Polymer and Titania Nanoparticles on Shale Hydration and Swelling Properties. Energy & Fuels. 2020;34(12):16456-16468. doi:10.1021/acs.energyfuels.0c02445.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2023 Muhammad Imran Rashid
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.