Investigation of Dielectric Properties of Quaternary Ceramic 0.47BNT-0.04BT-0.37PMN-0.18PT


  • Aparna Saxena

    Hindu College, University of Delhi, Delhi 110007, India

  • Abhilash J. Joseph

    University of Delhi, 110007, Delhi, India

  • Raghvendra Sahai Saxena

     Solid State Physics Laboratory, Lucknow Road, Timarpur, Delhi-110054, India



Dielectric dispersion analysis has been carried out for the first time on a new quaternary ceramic [0.47(Bi0.5Na0.5)TiO3-0.04BaTiO3-0.31Pb(Mg1/3Nb2/3)O3-0.18PbTiO3] having a morphotropic phase boundary composition. The measurement of the dielectric parameters has been carried out in the frequency range of 200 Hz to 2 MHz and temperature range from 30 oC to 300 oC. The material showed high dielectric constant, low dielectric loss, negligible DC conductivity and high ferroelectric to paraelectric transition temperature. A clear Debye type relaxation was observed in the dielectric constant and dielectric loss data. An interesting feature of two Debye peaks has been noticed in dielectric loss versus frequency curves in the temperature range 125 oC to 175 oC. These peaks shift towards higher frequencies when temperature is increased. The extracted relaxation times of the two peaks are three orders of magnitude different and have been found to follow the Arrhenius law with significantly different activation energies.


BNT-BT, Debye dispersion, PMN-PT, Quaternary ceramic


[1] Kazys, R. J., Sliteris, R., Sestoke, J., 2015. Development of air-coupled low frequency ultrasonic transducers and arrays with PMN-32%PT piezoelectric crystals. 2015 IEEE International Ultrasonics Symposium (IUS), 2015, Taipei International Convention Center, Taipai, Taiwan, no. 2, 5–8.

[2] Zhang, Z., Li, F., Chen, R., et al., 2018. High-Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 65(2), 223–230. DOI:

[3] Fei, C., Yang, Y., Guo, F., et al., 2018. PMN-PT single crystal ultrasonic transducer with half-concave geometric design for IVUS imaging. IEEE Transactions on Biomedical Engineering, 65(9), 2087–2092. DOI:

[4] Jiang, Z., Hou, C., Fei, C., et al., 2022. Effects of Composition Segregation in PMN-PT Crystals on Ultrasound Transducer Performance. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 69(2), 795–802. DOI:

[5] Fang, Z., Tian, X., Zheng, F., et al., 2022. Enhanced piezoelectric properties of Sm3+-modified PMN-PT ceramics and their application in energy harvesting. Ceramics International, 48(6), 7550–7556. DOI:

[6] Hussain, A., Sinha, N., Bhandari, S., et al., 2016. Synthesis of 0.64Pb(Mg1/3Nb2/3)O3 –0.36PbTiO3 ceramic near morphotropic phase boundary for high performance piezoelectric, ferroelectric and pyroelectric applications. Journal of Asian Ceramic Societies, 4(3), 337–343. DOI:

[7] Roed, E. S., Andersen, K. K., Bring, M., et al., 2019. Acoustic Impedance Matching of PMN-PT/epoxy 1-3 Composites for Underwater Transducers with Usable Bandwidth Restricted by Electrical Power Factor. IEEE International Ultrasonics Symposium (IUS). IUS, 1781–1784. DOI:

[8] Zhang, Z., 2020. New Sm-PMN-PT Ceramic-Based 2-D Array for Low-Intensity Ultrasound Therapy Application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67(10), 2085–2094, DOI:

[9] Zhang, Q., Su, M., Li, F., Liu, R., Cai, R., Li, G., Jiang, Q., Zhong, H., Shrout, T. R., Zhang, S., Zheng, H., Qiu, W., 2020. A PMN-PT Composite-Based Circular Array for Endoscopic Ultrasonic Imaging. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 67(11), 2354–2362. DOI:

[10] Ren, M., Xia, W., Xing, J., et al., 2021. The Dielectric and Piezoelectric Properties of the 1-3 Model PMN-PT/PVDF Composite Materials. IEEE International Symposium on Applications of Ferroelectrics (ISAF), 1-3. DOI:

[11] Chen, H., Mirg, S., Osman, M., et al., 2021. A High Sensitivity Transparent Ultrasound Transducer Based on PMN-PT for Ultrasound and Photoacoustic Imaging. IEEE Sensors Letters, 5(11), 5–8, 2021, DOI:

[12] Wang, X., Wang, Y., Zhang, Y., et al., 2021. Enhancement of the piezoelectric property in PMN-PZT/PZT thin films. Ceramics International, 48(9), 3–8. DOI:

[13] Jia, H., Mi, J., Li, Z., et al., 2022. Improved dielectric and piezoelectric properties of Sm-doped Pb(Mg1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)-PbTiO3 ternary ferroelectric ceramics. Ceramics International, 48(10), 1–6. DOI:

[14] Castrejón, M. V., Morán, E., Montero, A. R., et al., 2016. Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge. Materials (Basel), 9(21), 1-27. DOI:

[15] Yao, K., Chen, S., Guo, K., et al., 2017. Lead-Free Piezoelectric Ceramic Coatings Fabricated by Thermal Spray Process. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 64(11), 1758-1765. DOI:

[16] Gozuacik, N. K., Bayir, M. C., Alkoy, E. M.,et al., 2021. Origin of the Large Field-Induced Strain and Enhanced Energy Storage Response of Rare-Earth-Doped Lead-Free 0.854BNT–0.12BKT–0.026BT Ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(7), 2576-2584. DOI:

[17] Hou, L., Zhou, C., Li, Q., et al., 2022. Giant strain with ultra-low hysteresis by tailoring relaxor temperature and PNRs dynamic in BNT-based lead-free piezoelectric ceramics. Ceramics International, 48(9), 13125-13133. DOI:

[18] Li, X., Zhang, B., Cao, X., et al., 2022. Large strain response in (Bi0.5Na0.5)TiO3–6BaTiO3-based lead-free ceramics at high temperature. Ceramics International, 48(7), 9051-9058. DOI:

[19] Shieh, J., Wu, K. C., Chen, C. S., 2007. Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta Materialia, 55(9), 3081-3087. DOI:

[20] Wongsaenmai, S., Ananta, S., Yimnirun, R., 2009. Effects of addition of BT on structural phase formation and electrical properties of relaxor ferroelectric Pb(In0.5Nb0.5)(1−x)Ti(x)O3 ceramics. Journal of Alloys and Compounds, 474(1–2), 241-245. DOI:

[21] Joseph, A. J., Sinha, N., Goel, S., et al, B., 2019. New quaternary BNT–BT–PMN–PT ceramic: ferro/piezo/pyroelectric characterizations. Journal of Materials Science: Materials in Electronics, 30, 2729-12738. DOI:

[22] Saxena, A., Hussain, A., Saxena, A., et al., 2022. Dielectric dispersion near the morphotropic phase boundary of 0.64PMN-0.36PT ceramics. Ceramics International, 48(18), 26258-26263. DOI:

[23] Wang, D., Bokov, A., Ye, Z. G.,et al., 2016. Subterahertz dielectric relaxation in lead-free Ba(Zr,Ti)O3 relaxor ferroelectrics. Nat. Commun, 7, 11014. DOI:

[24] Volkov, A. A., Prokhorov, A. S., 2003. Broadband Dielectric Spectroscopy of Solids. Radiophysics and Quantum Electronics 46(8), 657-665. DOI:

[25] Jonscher A. K., Dube, D. C., 1977. Low-Frequency Dielectric Dispersion In Tri-Glycine Sulphate. Ferroelectrics, 17(1), 533–536. DOI:

[26] Cole, K. S., Cole, R. H., 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys., 9(4), 341–351. DOI:

[27] Kerstent, O., Schmidt, G., 1986. Dielectric dispersion in pzt ceramics. Ferroelectrics, 67(1), 191–197. DOI:

[28] Saxena, A., Saxena, A., Saxena, R. S., 2023. Analysing dielectric dispersion of 0.64PMN–0.36PT ceramics using electrical conductivity. Bulletin of Materials Science, 46(124), 1–8. DOI:


How to Cite

Saxena, A., J. Joseph, A., & Sahai Saxena, R. (2024). Investigation of Dielectric Properties of Quaternary Ceramic 0.47BNT-0.04BT-0.37PMN-0.18PT. Non-Metallic Material Science, 5(2), 26–36.