-
1583
-
1099
-
1096
-
641
-
616
The Effect of Methacrylic Acid and Maleic Acid on the Isothermal Kinetics of Acrylic Acid Crosslinking Co-polymerization under Conventional and Microwave Heating
DOI:
https://doi.org/10.30564/omms.v1i2.692Abstract
The kinetics of free-radical crosslinking co-polymerization (FRCCP) of acrylic acid (AA) with both methacrylic acid (MA) (PAMA hydrogel ) and maleic acid (MAL) (PAMAL hydrogel) was investigated under the conditions of isothermal conventional heating (CH) and under the conditions of microwave heating (MWH) with controlled cooling. The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction, whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger. It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters (activation energy (Ea) and pre-exponential factor (lnA). It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process, which is well-known as compensation effect. The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer (SET). The changes in kinetics model, rate of FRCCP and kinetics parameters, caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties. The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.
Keywords:
Acrylic acid (AA); Methacrylic acid (MA); Maleic acid (MAL); Isothermal crosslinking co-polymerizations; Conventionally heating (CH); Microwave heating (MWH)References
[1] N.A. Peppas, B.V. Slaughter, M.A. Kanzelberger, Polymer Science: A comprehensive reference, Hydrogels. Polym. Biol.Med., 2012, 9: 385–395.
[2] B. Adnađević, J. Jovanović: Hydrogels – Synthesis, Structures and Properties, Monography and additional scholar book, Faculty of Physical Chemistry, Belgrade, 2014: 253.
[3] ISBN: 978-86-82139-46-1
[4] C.O. Kappe, D. Dallinger, and S.S. Murphree, Practical Microwave Synthesis for Organic Chemists—Strategies, Instruments, and Protocols, Wiley-VCH, Weinheim, 2009.
[5] D. Bogdal and A. Prociak, Microwave-Enhanced of Polymer Chemistry and Technology, Blackwell, Oxford, UK, 2007.
[6] S. Singh, D. Gupta, V. Jain, and A.K. Sharma, Mater. Manuf. Process., 2015, 30, 1.
[7] A. Saberi, F. Golestani-Fard, M. Willert-Porada, Z. Negahdari, C. Liebscher, and B. Gossler, Ceramics Internat., 2009, 35(933).
[8] H.J. Sung, J. Taihuan, K. Young, and C. Jong-San, Chem. Eur. J., 2007, 13(4410).
[9] Q.S. Liu, T. Zhang, N. Li, P. Wang, and G. Abulkemi, Appl. Surface Sci., 2010, 256(3309).
[10] B. Adnadjevic and J. Jovanovic, The Effect of Microwave Heating on the Isothermal Kinetics of Chemicals Reaction and Physicpchemical Processes, in Advances in Induction and Microwave Heating of Mineral and Organic Materials, Prof. G. Stanislaw, Ed., InTech Europe, Rijeka, Croatia, Open Access Publisher, 2011.
[11] A. de la Hoz, A. Dıaz-Ortiz, and A. Moreno, Chem. Soc. Rev., 2005, 34(164).
[12] M. Nishii, The Journal of Osaka University Dental School, 1968, 2, 23-40.
[13] R. L. Schneider, E.R. Curtis, J.M.S.Clancy, J. Prosthetics Dentistry, 2002, 88: 145-150.
[14] N. Yunus, A. A. Rashid, L. L. Azmi, M. I. Abu-Hasan, J.Oral Rehabilitation, 2005, 32: 65-71.
[15] C. M.Rizzaati-Barbosa, M. C. Robeiro da Silva, J. Prosthodontics, 2009, 18: 503-506.
[16] F. Wiesbrock, R. Hoogenboom, U. S. Schubert, Macromol. Rapid Commun. 2004, 25: 1739–1764.
[17] H. Zhang, U. S. Schubert, Macromol. Rapid Commun. 2004, 25: 1225–1230.
[18] J. Jovanovic, B. Adnadjevic, J. App. Pol. Sci. 2007, 104: 1775-1782.
[19] P. Spasojevic, B.Adnadjevic, S.Velickovic, J.Jovanovic, J. App. Pol. Sci. 2011, 119: 3598-3606.
[20] P. Spasojevic, J. Jovanovic, B. Adnadjevic, Mat. Chem. Phys., 2013, 141 (2-3): 882-890.
[21] T.Zheng, P.Wang, Z. Zhang, B. Zhao, J. Appl. Polym. Sci, 2005, 95: 264.
[22] Xu, K.; Zhang, W. D.; Yue, Y. M.; Wang, P. X. J. Appl. Polym. Sc.i, 2005, 98: 1050,
[23] Shi, S.-H.; Liu, L. J. Chin Chem Lett, 2006, 17(361).
[24] Z. Zhao, Z. Li, Q. Xia, H. Xi, Y.Lin, Eur. Polym. J. 2008, 44(1217).
[25] G.Hucai, P.Wan, L. Dengke, Carbohydr Polym, 2006, 66(372),
[26] S.Vandana, N. T. Devendra,; T.Ashutosh, S. Rashmi, J. Appl. Polym Sci. 2005, 95(820).
[27] K.Prasad, R. Meena, A. K. Sidhanta, J. Appl. Polym. Sci. 2006, 101(161).
[28] J. Jovanovic, B. Adnadjevic, J. Appl. Polym. Sci. 2010, 116(55–63).
[29] B. Adnadjevic, J. Jovanovic, and B. Potkonjak, Rus. J. of Phys. Chem. A, 2013, 87(13).
[30] Lj. Nikolic, I. Ristic, B. Adnadjevic, V. Nikolic, J. Jovanovic, M. Stankovic, Sensors, 2010, 10: 5063-5073.
[31] J. Jovanovic, B. Potkonjak, T. Adnađevic, B. Adnađevic, Polymer Engineering and Science, 2016, 56(1): 87-96.
[32] B Adnadjevic, M Gigov, J Jovanovic, Chemical Engineering Research & Design, 2017, 122: 113-120.
[33] M. E. Brown, D. Dollimore, A. K.Galway, Reaction in the Solid State, In Comprehensive Chemical Kinetics, Ed. Elsevier, 1980.