-
1583
-
1099
-
1096
-
641
-
616
Thermo-Chromic Response of Polymer Stabilized Cholesteric Liquid Crystal for Thermal Imaging
DOI:
https://doi.org/10.30564/omms.v1i2.849Abstract
Cholesteric liquid crystal (Ch-LC) exhibits many remarkable optical properties due to formation of a macroscopic helical structure. A low amount of monomer (5wt.%) is dispersed into cholesteric liquid crystal and get polymerized under UV radiations to form polymer stabilized cholesteric texture (PSCT). The thermo-chromic response made this device suitable for the developing applications in thermal imaging. Temperature based measurements of PSCT exploits the key property of some polymer stabilized cholesteric liquid crystals (PSCLC) to reflect definite colors at specific temperatures. The selective color of PSCT texture shifts with raise in temperature from 30oC to 85oC, which can be utilized in thermal imaging applications.
Keywords:
Polymer stabilized cholesteric texture (PSCT); Cholesteric liquid crystal (CLC); Morphological study; Thermo-chromic ResponsesReferences
[1] Hongwen Ren and Shin-Tson We, “Reflective reversed mode polymer stablized cholestric texture light switches”, J.Appl.Phys. 2002, 92: 797.
[2] J.W. Doane, N.A. Voz, B.-G. Wu, and S. Zumer, “Field controlled scattering from nematic microdroplets ” Appl. Phys. Lett. 1986, 48: 269.
[3] Ji Ma, Lei Shi and Deng ka Yang, “Bistable polymer stabilized cholesteric texture light shutter” Appl. Phys. Express, 2010, 3: 021702.
[4] R. Bao, C.-M. Liu, and D.-K. Yang, “Smart bistable polymer stablised cholestric texture light shutter”Appl. Phys. Express, 2009, 2: 112401.
[5] P.P. Crooker and D.K. Yang, “Polymer dispersed chiral liquid crystal color display” Appl. Phys. Lett. 1990, 57: 2529.
[6] K. Kato, K. Tananka, S. Tsuru and S. Sakai, “Reflective color display using polymer dispersed cholestric liquid cryst.”, Jpn. J. Appl. Phys. 1994, 33: 2635-2640.
[7] H.–H. Liang, C.-C. Wu, P.-H. Wang, J.-Y. Lee, “Electro-thermal switchable bistable reverse mode polymer stabilized cholesteric texture light shutter”, Opt . Mater. 2011, 33: 1195-1202.
[8] Friedel, G., Les états mésomorphes de la matière, “Annl. Phys. 1922, 18: 273.
[9] C.-Y. Huang, S. -Weike, Y.-S. Chih, “Electro-optical performance of Polymer Stabilized Cholesteric texture cell: the influence of chiral dopent and monomer concentration”, Optics Communications, 2006, 266: 198-202.
[10] J.B. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, J. Wei,” Effect of network conc. On the performance of Polymer stabilized cholesteric liquid crystal with double handed circularly polarized light reflection band”, J. Phys. Chem.C, 2009, 113: 16538-16543.
[11] S.W. Kang, S. Sprunt and L.C. Chien, “Structure and morphology of polymer stabilized cholesteric diffraction gratings”Appl. Phys. Lett. 2000, 76: 3516.
[12] S.H. Kim, L.-C. Chien and L. Komitov, “Short pitch cholestric electro-optical device stabilized by non uniform polymer network”, Appl. Phys. Lett. 2005, 86: 161118.
[13] I. Dierking,”Recent development in polymer stabilized liquid crystal”, Polym. Chem. 2010, 1: 1153-59.
[14] J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang and J. Wei,” Fabrication of multi-pitched photonic structure in cholesteric liquid crystal based on polymer template with helical structure”, J. Mater. Chem. 2010, 20: 4094-4102.
[15] P.S. Drazic, “Liquid Crystal Dispersion” World Scientific Singapore, 1995.
[16] R. Kumar; K.K. Raina; “Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter” Liquid Crystals, 2014, 41: 228-233.
[17] K.K. Raina and P. Kumar, “Polymer dispersed liquid crystal composite films-deoplet orientation and optical response.” Journal of the Indian Institute of Science, 2009, 89: 243-248.
[18] S.-Y. Lua and L.-C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection.” Applied physics letters, 2007, 91: 131119.
[19] Rui Bao, Cheng-Mei Liu and Deng-Ke Yang, “Smart Bistable Polymer Stabilized Cholesteric Texture Light Shutter” Applied Physics Express, 2009, 2: 112401.
[20] S. Wang, J. He, Y. Zeng, B. Yan, Y. Wang, “Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films” Front. Chem. Eng. China, 2008, 2: 265–268.
[21] C. V. Rajaram, S. D.Hudson, L. C. Chien, “Morphology of polymer stabilized liquid crystal” Chem. Mater. 1995, 7: 2300-2308.
[22] E.Merck, Data sheet.
[23] Norland, N.J., USA, Data sheet.
[24] D.K. Yang and S.T. Wu; “Fundamentals of liquid crystal devices ( New York: John Wiley and Sons Inc)
[25] G. Diankov, H. Naradikian and T. Angelov, Polymer-stabilized liquid crystal indicator used in thermometry, J. Mater. Sci.: Mater. Electron, 2003, 14: 831–832.
[26] H. Guillard, P. Sixou, L. Reboul, A. Perichaud; “Electrooptical characterization of polymer stabilized cholesteric liquid crystals” Polymer, 2001, 42: 9753-9762.
[27] X.T. Yahn, H. Cao, Z. Yang, H. Yang; “A selective reflecting film with a temperature-dependent pitch length.” Chienese chemical letters, 2010, 2: 279-282.
[28] S. Chandrashekar, Liquid Crystal 2nd Edn., Cambridge University Press, Singapore, 1992.
[29] Kumar, R., Raina, K.K., “Optical and electrical control of circularly polarised fluorescence in CdSe quantum dots dispersed polymer stabilised cholesteric liquid crystal shutter,” Liquid Crystals, 2016, 43: 994-1001.
[30] Middha, M., Kumar, R., Raina, K.K., “Effects of chirality on optical and electro-optic behavior of nematic liquid crystals doped with functionalized silver nanoparticles,” Journal of Molecular Liquids, 2016, 219: 631-636.
[31] J. Stasieka, A. Stasieka, M. Jewartowski, M.W. Collins, “Liquid crystal thermography and true-colour digital image processing” Optics & Laser Technology, 2006, 38: 243–256.