Prickly Pear Cactus : An Excellent Crop to Mitigate Climate Change

Authors

  • Dramane Yewaga Koalaga

    Department of Arboriculture-Viticulture, National School of Agriculture, Meknes 50001, Morocco

    Department of Biology, Ibn Toufail University, Kenitra 14050, Morocco

  • Zerhoune Messaoudi

    Department of Arboriculture-Viticulture, National School of Agriculture, Meknes 50001, Morocco

  • Mohammed Ibriz

    Department of Biology, Ibn Toufail University, Kenitra 14050, Morocco

  • Lhoussain Ait Haddou

    Department of Arboriculture-Viticulture, National School of Agriculture, Meknes 50001, Morocco

DOI:

https://doi.org/10.30564/re.v7i3.8778
Received: 18 February 2025 | Revised: 29 April 2025 | Accepted: 27 May 2025 | Published Online: 18 July 2025

Abstract

Significant variations in global temperatures and weather patterns over time are known as climate change. Although it occurs naturally, human activities—particularly the burning of fossil fuels, deforestation, and industrial processes—are accelerating these changes, which have various detrimental effects on the environment. This review aims to highlight the edapho-climatic requirements of this cactus and the advantages and challenges of its cultivation to mitigate climate change. The prickly pear cactus is a plant with numerous financial and environmental advantages. It needs well-draining, sandy or gravelly soil to avoid root rot and do best in full sun. With a strong tolerance for dryness, they thrive in arid or semi-arid regions with scorching summers and prefer sparing watering. Despite being suited to tropical climates, some species can tolerate freezing temperatures and sporadic frost. Once established, these hardy plants require little care and thrive in nutrient-poor soils, which makes them perfect for xeriscaping or challenging growing environments. Because of its high water use efficiency ratio and low water requirements, prickly pear can be grown in marginally dry and semi-arid areas. The cactus does contribute to the ecological and socioeconomic fight against climate change. For instance, it supports sustainable agriculture, biodiversity preservation, soil restoration, carbon sequestration, and effective water usage. Demarcating dry and semi-arid zones and fostering employment in these areas is beneficial from a socioeconomic standpoint. The prickly pear's traditional cultural heritage supports its current economic function as a crop that can withstand drought.  While ecological threats necessitate balanced management, this adaptability promotes sustainable growth.  Innovations in bioenergy and value-added goods build on its historical applications, increasing its socioeconomic advantages and, eventually, its worldwide significance.

Keywords:

Prickly Pear; Ecology; Climate Change; Carbon Sequestration; Biomass; Cultivation

References

[1] Mulas, M., Mulas, G., 2004. Potentialités d'utilisation Stratégique Des Plantes Des Genres Atriplex et Opuntia Dans La Lutte Contre La Désertification. Short and Medium-Term Priority Environmental Action Programme (SMAP). Université des études de SASSAR. p. 112.

[2] Nefzaoui, A., Louhaichi, M., Ben Salem, H., 2014. Cactus as a Tool to Mitigate Drought and to Combat Desertification.Journal of Arid Land Studies. 24(1), 121–124.

[3] Hussien, M.A., Ahmed, Z.F.R., 2018. Plant Extracts Treatment along with Flower Bud Thinning Promotes Cactus Pear Production and Fruit Quality. Acta Horticulturae. 1216, 127–134. DOI: https://doi.org/10.17660/ActaHortic.2018.1216.16

[4] Rebman, J.P., Pinkava, D.J., 2001.Opuntia Cacti of North America: An Overview. The Florida Entomologist. 84(4), 474–483. DOI: https://doi.org/10.2307/3496374

[5] Bouzoubaâ, Z., Hatimi, A., Harhar, H., et al., 2016. Phytochemical Study of Prickly Pear from Southern Morocco.Journal of the Saudi Society of Agricultural Sciences.

[6] Stintzing, F.C., Herbach, K.M., Mosshammer, et al., 2005. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia Spp.) Clones. Journal Of Agricultural And Food Chemistry. 53(2), 442–451. DOI: https://doi.org/10.1021/jf048751y

[7] Winter, K., Smith, J.A.C., 1996. Crassulacean Acid Metabolism: Current Status and Perspectives. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution, K. Winter, and J.A.C. Smith, eds. Springer, Berlin, Heidelberg. 389–426. DOI: https://doi.org/10.1007/978-3-642-79060-7_26

[8] Barbera, G., Inglese, P., Pimienta-Barrios, E., 1995. Agro-Ecology, Cultivation, and Uses of Cactus Pear.

[9] Nobel, P.S., 1995. Environmental Biology. Agro-Ecology, Cultivation and Uses Ofs of Cactus Pear, FAO Plant Production and Protection. 132. Rome, FAO. pp. 36–48.

[10] Nobel, P.S., Israel, A.A., 1994.Cladode Development, Environmental Responses of CO2 Uptake, and Productivity for Opuntia Ficus-Indica under Elevated CO2. Journal of Experimental Botany. 45(3), 295–303.

[11] Reis, C.M.G., Gazarini, L.C., Fonseca, T.F., et al., 2016. Above-Ground Biomass Estimation of Opuntia Ficus-Indica (L.) Mill. for Forage Crop in a Mediterranean Environment by Using Non-Destructive Methods. Experimental Agriculture. 54(2), 227–242. DOI: https://doi.org/10.1017/S0014479716000211

[12] Inglese, P., 1995. Orchard Planting Management. Agro-Ecology, Cultivation and Uses of Cactus Pear., Plant Production and Protection Paper, Rome, Italy, 78–91.

[13] Loudyi, D.W., 1995. Quelques Espèces Fruitières d'intérêt Secondaire Cultivées Au Maroc. Cahiers Options Méditerranéennes. (13), 47–62.

[14] Nobel, P.S., 2002. Cacti: Biology and Uses, University of California Press.

[15] Nobel, P.S., 1985. Desert Succulents. Physiological Ecology of North American Plant Communities, B.F. Chabot, and H.A. Mooney, eds., Springer Netherlands, Dordrecht. 181–197. DOI: https://doi.org/10.1007/978-94-009-4830-3_8

[16] Nobel, P.S., 1988. Environmental Biology of Agaves and Cacti, Cambridge University Press.

[17] Pimienta Barrios, E., 1990. El Nopal Tunero. (No. 4; SB379.), 5–8.

[18] Inglese, P., Gugliuzza, G., La Mantia, T., 2002. Alternative bearing and summer pruning of cactus pear. Acta Horticulturae. (581), 201–204. DOI: https://doi.org/10.17660/ActaHortic.2002.581.19

[19] Monjauze, A., Le Houerou, H.N., 1966. Le Role Des Opuntia Dans l'economie Agricole Nord Africaine. Food and Agriculture Organization of the United Nations.

[20] Felker, P., Inglese, P., 2003. Short-Term and Long-Term Research Needs for Opuntia Ficus-Indica (L.) Mill. Utilization in Arid Areas. Journal of the Professional Association for Cactus Development, 5.

[21] Le Houérou, H. N., 1996. The Role of Cacti (Opuntiaspp.) in Erosion Control, Land Reclamation, Rehabilitation and Agricultural Development in the Mediterranean Basin. Journal of Arid Environments. 33(2), 135–159. DOI: https://doi.org/10.1006/jare.1996.0053

[22] Horibe, T., Yamada, K., 2016. Hydroponics Culture of Edible Opuntia ‘Maya': Drought Stress Affects the Development of Spines on Daughter Cladodes. Environmental Control in Biology. 54(3),153–156. DOI: https://doi.org/10.2525/ecb.54.153

[23] Dubeux, J.C.B., dos Santos, M.V.F., de Andrade Lira, M., et al., 2006. Productivity of opuntia ficus-indica (l.) miller under different n and p fertilization and plant population in North-East Brazil. Journal of Arid Environments. 67(3), 357–372. DOI: https://doi.org/10.1016/j.jaridenv.2006.02.015

[24] Arba, M., 2013. Nutritive value of cactus pear for cattle in south of morocco. Acta Horticulturae. (995), 303–307. DOI: https://doi.org/10.17660/ActaHortic.2013.995.37

[25] Potgieter, J., D'Aquino, S., 2017. Fruit production and post-harvest management. Crop ecology, cultivation and uses of cactus pear. pp. 51–71.

[26] Nobel, P.S., Bobich, E.G., 2002. Environmental Biology. Cacti: biology and uses. pp. 57–74.

[27] Bunch, R., 1996. New developments in breeding and cactus pear products at D'Arrigo Bros. Journal of the Professional Association for Cactus Development. 1, 100–102.

[28] Gersani, M., Graham, E.A., Nobel, P.S., 1993. Growth Responses of Individual Roots of Opuntia Ficus-Indica to Salinity. Plant, Cell and Environment. 16(7), 827–834. DOI: https://doi.org/10.1111/j.1365-3040.1993.tb00504.x

[29] Brutsch, M.O., Zimmermann, H.G., 1993. The Prickly Pear (Opuntia Ficus-Indica [Cactaceae]) in South Africa: Utilization of the Naturalized Weed, and of the Cultivated Plants. Economic Botany, 47(2),154–162. DOI: https://doi.org/10.1007/BF02862018

[30] Brutsch, M.O., 1997. Climatic data of selected cactus pear (Opuntia ficus-indica) growing areas in south africa. Acta Horticulturae. (438), 13–20. DOI: https://doi.org/10.17660/ActaHortic.1997.438.1

[31] Nobel, P.S., Loik, M.E., 1990. Thermal Analysis, Cell Viability, and CO2 Uptake of a Widely Distributed North American Cactus, Opuntia Humifusa at Subzero Temperatures. Plant Physiology and Biochemistry. 28(4), 429–436.

[32] Loik, M.E., Nobel, P.S., 1993. Freezing Tolerance and Water Relations of Opuntia Fragilis from Canada and the United States. Ecology. 74(6), 1722–1732. DOI: https://doi.org/10.2307/1939931

[33] Nerd, A., Karady, A., Mizrahi, Y., 1991. Out-of-Season Prickly Pear: Fruit Characteristics and Effect of Fertilization and Short Droughts on Productivity. HortScience. 26(5), 527–529. DOI: https://doi.org/10.21273/HORTSCI.26.5.527

[34] Nobel, P.S., Castañeda, M., 1998. Seasonal, Light, and Temperature Influences on Organ Initiation for Unrooted Cladodes of the Prickly Pear Cactus Opuntia Ficus-Indica. Journal of the American Society for Horticultural Science. 123(1), 47–51. DOI: https://doi.org/10.21273/JASHS.123.1.47

[35] Liguori, G., Miceli, C.D., Gugliuzza, G., et al., 2007. Physiological and Technical Aspects of Cactus Pear [ Opuntia Ficus-Indica (L.) Mill.] Double Rellowering and Out-of-Season Winter Fruit Cropping. International Journal of Fruit Science. 6(3), 23–34. DOI: https://doi.org/10.1300/J492v06n03_03

[36] Inglese, P., Barbera, G., La Mantia, T., 1999. Seasonal Reproductive and Vegetative Growth Patterns and Resource Allocation during Cactus Pear Fruit Growth. HortScience. 34(1), 69–72. DOI: https://doi.org/10.21273/HORTSCI.34.1.69.

[37] Nerd, A., Mizrahi, Y., 1995. Effect of Low Winter Temperatures on Bud Break in Opuntia Ficus-Indica. Advances in Horticultural Science. 188–191.

[38] Gutterman, Y., 1995. Environmental Factors Affecting Flowering and Fruit Development of Opuntia Ficus-Indica Cuttings during the Three Weeks before Planting. Israel Journal of Plant Sciences. 43(2), 151–157.

[39] Potgieter, J., Smith, M., 2006. Genotype × Environment Interaction in Cactus Pear (Opuntia Spp.), Additive Main Effects and Multiplicative Interaction Analysis of Fruit Yield. Acta Horticulturae. (728), 97–104. DOI: https://doi.org/10.17660/ActaHortic.2006.728.12

[40] Barbera, G., Inglese, P., Carimi, F., 1991. The Reflowering of Prickly Pear Opuntia Ficus Indica (L.) Miller: Influence of Removal Time and Cladode Load on Yield and Fruit Ripening. Advances in horticultural science. 5(2), 77–80.

[41] Brutsch, M.O., Scott, M.B., 1991. Extending the Fruiting Season of Spineless Prickly Pear (Opuntia Ficus-Indica). Journal of the South African Society for Horticultural Science. 1,73–76.

[42] Nieddu, G., Spano, D., 1992. FLOWERING AND FRUIT GROWTH IN OPUNTIA FICUS-INDICA. Acta Horticulturae. (296),153–160. DOI: https://doi.org/10.17660/ActaHortic.1992.296.19

[43] Sudzuki Hills, F., Berger, S.H., Muñoz Serrano, M.C., 1993. El Cultivo de La Tuna (Cactus Pear), First Edition. Faculty of Agronomic Science, Department of Agricultural Production, University of Chile.

[44] Mainguet, M., 2016. Wind Erosion and Its Control. The Gulf War and the Environment, Routledge. pp. 163–194.

[45] Nobel, P.S., 1980. Morphology, Surface Temperatures, and Northern Limits of Columnar Cacti in the Sonoran Desert. Ecology. 61(1), 1–7. DOI: https://doi.org/10.2307/1937146

[46] Inglese, P., Liguori, G., De La Barrera, E., 2018. Ecophysiologie et Biologie de La Reproduction Des Cactus Cultivés. Eds. Ecologie, Culture et Utilisations Du Figuier de Barbarie, Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). pp. 31–42.

[47] Poupon, J.E., 1975. Cactus et Ressources Fourragères. Amélioration et aménagement des parcours forestiers.

[48] Koalaga, D.Y., Messaoudi, Z., Ibriz, M., et al., 2018. Effect of Altitude on the Pomological and Physico-Chemical Traits of Dellahia Prickly Pear Fruits in Northern Morocco.

[49] Barbera, G., Carimi, F., Inglese, P., et al., 1992. Physical, Morphological and Chemical Changes during Fruit Development and Ripening in Three Cultivars of Prickly Pear, Opuntia Ficus-Indica (L.) Miller. Journal of Horticultural Science. 67(3), 307–312. DOI: https://doi.org/10.1080/00221589.1992.11516253

[50] Pimienta-Barrios, E., 1994. Prickly Pear (Opuntia Spp.): A Valuable Fruit Crop for the Semi-Arid Lands of Mexico. Journal of Arid Environments. 28(1), 1–11. DOI: https://doi.org/10.1016/S0140-1963(05)80016-3

[51] Dramane, K.Y., Zerhoune, M., Mohammed, I., et al., 2024. The Influence of Altitude on the Polyphenols Content and Antioxidant Capacity of Northern Moroccan ‘Dellahia' Prickly Pear Juice. WSEAS Transactions on Environment and Development. 20, 519–529. DOI: https://doi.org/10.37394/232015.2024.20.51

[52] Del Grosso, S.J., Parton, W.J., Derner, J.D., et al., 2018. Simple Models to Predict Grassland Ecosystem C Exchange and Actual Evapotranspiration Using NDVI and Environmental Variables. Agricultural and Forest Meteorology. 249,1–10. DOI: https://doi.org/10.1016/j.agrformet.2017.11.007

[53] Rodda, S.R., Thumaty, K.C., Praveen, M., et al., 2021. Multi-Year Eddy Covariance Measurements of Net Ecosystem Exchange in Tropical Dry Deciduous Forest of India. Agricultural and Forest Meteorology. 301–302, 108351. DOI: https://doi.org/10.1016/j.agrformet.2021.108351

[54] Yao, Y., Piao, S., Wang, T., 2018. Future Biomass Carbon Sequestration Capacity of Chinese Forests. Science Bulletin. 63(17), 1108–1117. DOI: https://doi.org/10.1016/j.scib.2018.07.015

[55] Zeng, N., Jiang, K., Han, P., et al., 2022. The Chinese Carbon-Neutral Goal: Challenges and Prospects. Advances In Atmospheric Sciences. 39(8), 1229–1238. DOI: https://doi.org/10.1007/s00376-021-1313-6

[56] Doran, J. W., 2002. Soil Health and Global Sustainability: Translating Science into Practice. Agriculture, Ecosystems & Environment. 88(2), 119–127. DOI: https://doi.org/10.1016/S0167-8809(01)00246-8

[57] Bautista-Cruz, A., Leyva-Pablo, T., de León-González, F., et al., 2018. Cultivation of under Different Soil Management Practices: A Possible Sustainable Agricultural System to Promote Soil Carbon Sequestration and Increase Soil Microbial Biomass and Activity. Land Degradation & Development. 29(1), 38–46. DOI: https://doi.org/10.1002/ldr.2834

[58] Pimienta-Barrios, E., Zañudo, J., Yepez, E., et al., 2000. Seasonal Variation of Net CO2uptake for Cactus Pear (Opuntia Ficus-Indica) and Pitayo (Stenocereus Queretaroensis) in a Semi-Arid Environment. Journal of Arid Environments. 44(1), 73–83. DOI: https://doi.org/10.1006/jare.1999.0570

[59] Jardim, A.M. da R.F., Morais, J.E.F. de, Souza, L.S.B. de, et al., 2023. Sink or Carbon Source? How the Opuntia Cactus Agroecosystem Interacts in the Use of Carbon, Nutrients and Radiation in the Brazilian Semi-Arid Region. Journal of Hydrology. 625, 130121. DOI: https://doi.org/10.1016/j.jhydrol.2023.130121

[60] Owen, N.A., Fahy, K.F., Griffiths, H., 2016. Crassulacean Acid Metabolism (CAM) Offers Sustainable Bioenergy Production and Resilience to Climate Change. GCB Bioenergy. 8(4), 737–749. DOI: https://doi.org/10.1111/gcbb.12272

[61] Jardim, A.M. da R.F., Santos, H.R.B., Alves, H.K.M.N., et al., 2021. Genotypic Differences Relative Photochemical Activity, Inorganic and Organic Solutes and Yield Performance in Clones of the Forage Cactus under Semi-Arid Environment. Plant Physiology and Biochemistry. 162, 421–430. DOI: https://doi.org/10.1016/j.plaphy.2021.03.011

[62] Onyekwelu, J.C., Mosandl, R., Stimm, B., 2011. Effect of Land-Use Systems and Seasonal Variation on Microbial Biomass and Population in Tropical Rainforest Soils.. Nigerian Journal of Forestry. 40 (2), 60.

[63] Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., et al., 2011. Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478(7367), 49–56. DOI: https://doi.org/10.1038/nature10386

[64] De León-González, F., Fuentes-Ponce, M. H., Bautista-Cruz, A., et al., 2018. Cactus Crop as an Option to Reduce Soil C–CO2 Emissions in Soils with Declining Fertility. Agronomy For Sustainable Development. 38(1), 8. DOI: https://doi.org/10.1007/s13593-017-0481-3

[65] Del Socorro Santos Díaz, M., Barba De La Rosa, A.P., Héliès-Toussaint, C., et al., 2017. Opuntia Spp: Characterization and Benefits in Chronic Diseases. Oxidative Medicine and Cellular Longevity. 2017(1), 8634249. DOI: https://doi.org/10.1155/2017/8634249

[66] Bowers, J.E., 1996. Growth Rate and Life Span of a Prickly Pear Cactus, Opuntia Engelmannii, in the Northern Sonoran Desert. The Southwestern Naturalist. 41(3), 315–318.

[67] Bowers, J.E., Webb, R.H., Rondeau, R.J., 1995. Longevity, Recruitment and Mortality of Desert Plants in Grand Canyon, Arizona, USA. J Vegetation Science. 6(4), 551–564. DOI: https://doi.org/10.2307/3236354

[68] Reyes-Agüero, J.A., Valiente-Banuet, A., 2006. Reproductive Biology of Opuntia: A Review. Journal of arid environments. 64(4), 549–585.

[69] Inglese, P., Basile, F., Schirra, M., 2002. Cactus Pear Fruit Production. Cacti: Biology and uses. 163–183.

[70] Borland, A.M., Barrera Zambrano, V.A., Ceusters, J., et al., 2011. The Photosynthetic Plasticity of Crassulacean Acid Metabolism: An Evolutionary Innovation for Sustainable Productivity in a Changing World. New Phytol. 191(3), 619–633. DOI: https://doi.org/10.1111/j.1469-8137.2011.03781.x

[71] Borland, A.M., Wullschleger, S.D., Weston, D.J., et al., 2015. Climate-Resilient Agroforestry: Physiological Responses to Climate Change and Engineering of Crassulacean Acid Metabolism (CAM) as a Mitigation Strategy. Plant, Cell & Environment. 38(9), 1833–1849. DOI: https://doi.org/10.1111/pce.12479

[72] Han, H., and Felker, P., 1997. Field Validation of Water-Use Efficiency of the CAM plantOpuntia Ellisianain South Texas. Journal of Arid Environments. 36(1), 133–148. DOI: https://doi.org/10.1006/jare.1996.0202

[73] Nobel, P. S., 2009. Temperature and Energy Budgets. Physicochemical and environmental plant physiology. 4, 318–363.

[74] Andrew, J., Smith, C., Nobel, P.S., 1986. Water Movement and Storage in a Desert Succulent: Anatomy and Rehydration Kinetics for Leaves of Agave Deserti. Journal of Experimental Botany. 37(7), 1044–1053. DOI: https://doi.org/10.1093/jxb/37.7.1044

[75] Osmond, C.B., 1978. Crassulacean Acid Metabolism: A Curiosity in Context. Annual Review of Plant Biology. 29(1978), 379–414. DOI: https://doi.org/10.1146/annurev.pp.29.060178.002115

[76] Barcikowski, W., Nobel, P.S., 1984. Water Relations of Cacti During Desiccation: Distribution of Water in Tissues. Botanical Gazette. 145(1), 110–115. DOI: https://doi.org/10.1086/337433.

[77] Crist, E., Mora, C., Engelman, R., 2017. The Interaction of Human Population, Food Production, and Biodiversity Protection. Science. 356(6335), 260–264. DOI: https://doi.org/10.1126/science.aal2011

[78] Newbold, T., Hudson, L.N., Arnell, A.P., et al., 2016. Has Land Use Pushed Terrestrial Biodiversity beyond the Planetary Boundary? A Global Assessment. Science. 353(6296), 288–291. DOI: https://doi.org/10.1126/science.aaf2201

[79] Andriamparany, R., Lundberg, J., Pyykönen, M., et al., 2020. The Effect of Introduced Opuntia (Cactaceae) Species on Landscape Connectivity and Ecosystem Service Provision in Southern Madagascar. Sustainability Challenges in Sub-Saharan Africa II: Insights from Eastern and Southern Africa. Springer: Singapore. pp. 145–166. DOI: https://doi.org/10.1007/978-981-15-5358-5_6

[80] Ávila-Gómez, E. S., Meléndez-Ramírez, V., Castellanos, I., et al., 2019. Prickly Pear Crops as Bee Diversity Reservoirs and the Role of Bees in Opuntia Fruit Production. Agriculture, Ecosystems & Environment. 279,80–88. DOI: https://doi.org/10.1016/j.agee.2019.04.012

[81] Méndez-Gallegos, S.J., García, H.E.J., 2013. Aprovechamiento, usos y aplicaciones del nopal. Produccion Sustentable de la tuna en San Luis Potos, Mexico. pp. 7–24.

[82] Riojas-López, M.E., 2006. Rodent Communities in Two Natural and One Cultivated ‘Nopaleras' (Opuntia Spp.) in North-Eastern Jalisco, Mexico. Journal of Arid Environments, 67(3), 428–435. DOI: https://doi.org/10.1016/j.jaridenv.2006.02.020

[83] Riojas-López, M.E., 2012. Response of Rodent Assemblages to Change in Habitat Heterogeneity in Fruit-Oriented Nopal Orchards in the Central High Plateau of Mexico. Journal of Arid Environments. 85, 27–32. DOI: https://doi.org/10.1016/j.jaridenv.2012.04.004

[84] Riojas-López, M.E., Mellink, E., Luévano, J., 2018. A Semiarid Fruit Agroecosystem as a Conservation-Friendly Option for Small Mammals in an Anthropized Landscape in Mexico. Ecological Applications. 28(2), 495–507. DOI: https://doi.org/10.1002/eap.1663

[85] Riojas-López, M.E., Mellink, E., 2005. Potential for Biological Conservation in Man-Modified Semiarid Habitats in Northeastern Jalisco, Mexico. Biodivers Conserv. 14(9), 2251–2263. DOI: https://doi.org/10.1007/s10531-004-5289-1

[86] Tenorio-Escandón, P., Ramírez-Hernández, A., Flores, J., et al., 2022. A Systematic Review on Opuntia (Cactaceae; Opuntioideae) Flower-Visiting Insects in the World with Emphasis on Mexico: Implications for Biodiversity Conservation. Plants, 11(1),131. DOI: https://doi.org/10.3390/plants11010131

[87] Potts, S.G., Kevan, P.G., Boone, J. W., 2005. Conservation in Pollination: Collecting, Surveying and Monitoring. A. Dafni, P. Kevan, and C. Husband, eds., Enviroquest, Cambridge, Ontario, 401–434.

[88] Genin, M., Alifriqui, M., Fakhech, A., et al., 2017. Back to Forests in Pre-Saharan Morocco? When Prickly Pear Cultivation and Traditional Agropastoralism Reduction Promote Argan Tree Regeneration. Silva Fennica. 51(1B).

[89] Oduor, K., Dubeux, J., Owino, W., et al., 2024. Below Ground Benefits of Cactus Opuntia Stricta Under Rangeland Conditions in Laikipia, Kenya. IGC Proceedings (1993-2023).

[90] Novoa, A., Le Roux, J.J., Robertson, M.P., et al., 2015. Introduced and Invasive Cactus Species: A Global Review. AoB PLANTS. 7, 078. DOI: https://doi.org/10.1093/aobpla/plu078

[91] Stavi, I., 2022. Ecosystem Services Related with Opuntia Ficus-Indica (Prickly Pear Cactus): A Review of Challenges and Opportunities. Agroecology and Sustainable Food Systems. 46(6), 815–841. DOI: https://doi.org/10.1080/21683565.2022.2076185

[92] Jorge, A.O.S., Costa, A.S.G., Oliveira, M.B.P.P., 2023. Adapting to Climate Change with Opuntia. Plants. 12(16), 2907. DOI: https://doi.org/10.3390/plants12162907

[93] Sipango, N., Ravhuhali, K.E., Sebola, N.A., et al., 2022. Prickly Pear (Opuntia Spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals. Sustainability. 14(7), 3719. DOI: https://doi.org/10.3390/su14073719

[94] Dubeux, J.C.B., Santos, M.V.F., Souza, R.T.A., et al., 2022. Cactus: The New Green Revolution in Drylands. Acta Horticulturae sinica. (1343), 233–240. DOI: https://doi.org/10.17660/ActaHortic.2022.1343.31

[95] Louhaichi, M., Nefzaoui, A., Guevara, J.C., 2017, Cactus Ecosystem Goods and Services, Organización de las Naciones Unidas para la Alimentación y la Agricultura.

[96] Guevara, J.C., Estevez, O.R., Stasi, C.R., 1999. Economic Feasibility of Cactus Plantations for Forage and Fodder Production in the Mendoza Plains (Argentina). Journal of Arid Environments. 43(3), 241–249. DOI: https://doi.org/10.1006/jare.1999.0536

[97] Mazhar, M., Arif, A., Chriyâa, A., et al., 2002. Cactus protects soil and livestock in rhamna region. Acta Horticulturae. 581, 329–332. DOI: https://doi.org/10.17660/ActaHortic.2002.581.38

[98] El-Aalaoui, M., Sbaghi, M., 2024. Optimisation de la résilience du cactus (Opuntia spp.) au Maroc. African and Mediterranean Agricultural Journal - Al Awamia. 143, 188–200. DOI: https://doi.org/10.34874/IMIST.PRSM/afrimed-i143.48171

[99] Arba, M., 2020. The Potential of Cactus Pear (Opuntia Ficus-Indica (L.) Mill.) as Food and Forage Crop. Emerging Research in Alternative Crops, A. Hirich, R. Choukr-Allah, and R. Ragab, eds., Springer International Publishing, Cham. 335–357. DOI: https://doi.org/10.1007/978-3-319-90472-6_15

[100] Neffar, S., Beddiar, A., Menasria, T., et al., 2022. Planting Prickly Pears as a Sustainable Alternative and Restoration Tool for Rehabilitating Degraded Soils in Dry Steppe Rangelands. Arab J Geosci. 15(3), 287. DOI: https://doi.org/10.1007/s12517-022-09579-1

[101] MacRae, R.J., Hill, S.B., Henning, J., et al., 1989. Agricultural Science and Sustainable Agriculture: A Review of the Existing Scientific Barriers to Sustainable Food Production and Potential Solutions. Biological Agriculture & Horticulture. 6(3), 173–219. DOI: https://doi.org/10.1080/01448765.1989.9754518

[102] Rivera-Ferre, M. G., Ortega-Cerdà, M., Baumgärtner, J., 2013. Rethinking Study and Management of Agricultural Systems for Policy Design. Sustainability. 5(9), 3858–3875. DOI: https://doi.org/10.3390/su5093858

[103] Peters, K.A., 2010. Creating a Sustainable Urban Agriculture Revolution. Journal of Environmental Law and Litigation. 25, 203.

[104] Lemke, H., 2012, Politik des Essens: Wovon die Welt von morgen lebt, transcript Verlag. DOI: https://doi.org/10.14361/transcript.9783839418451

[105] Ogaji, J., 2005. Sustainable Agriculture in the UK. Environ Dev Sustain. 7(2), 253–270. DOI: https://doi.org/10.1007/s10668-005-7315-1

[106] Thrupp, L.A., 2000. Linking Agricultural Biodiversity and Food Security: The Valuable Role of Agrobiodiversity for Sustainable Agriculture. International Affairs. 76(2), 265–281. DOI: https://doi.org/10.1111/1468-2346.00133

[107] Goodland, R., 1997. Environmental Sustainability in Agriculture: Diet Matters. Ecological Economics. 23(3), 189–200. DOI: https://doi.org/10.1016/S0921-8009(97)00579-X

[108] Koohafkan, P., Altieri, M.A., Gimenez, E.H., 2012. Green Agriculture: Foundations for Biodiverse, Resilient and Productive Agricultural Systems. International Journal of Agricultural Sustainability. 10(1), 61–75. DOI: https://doi.org/10.1080/14735903.2011.610206.

[109] Neffar, S., Menasria, T., Chenchouni, H., 2018. Diversity and Functional Traits of Spontaneous Plant Species in Algerian Rangelands Rehabilitated with Prickly Pear (Opuntia Ficus-Indica L.) Plantations. Turkish Journal of Botany. 42(4), 448–461. DOI: https://doi.org/10.3906/bot-1801-39

[110] Shackleton, S., Kirby, D., Gambiza, J., 2011. Invasive Plants – Friends or Foes? Contribution of Prickly Pear (Opuntia Ficus-Indica) to Livelihoods in Makana Municipality, Eastern Cape, South Africa. Development Southern Africa. 28(2), 177–193. DOI: https://doi.org/10.1080/0376835X.2011.570065

[111] Belay, T., 2009. Introducing Cactus-Based Agro-Forestry Practices to the Dry Lands of Northern Ethiopia. Cactusnet Newsletter: Guadalajara, JAL, Mexico, Mekelle, Ethiopia. 127.

[112] Thomas, R. J., El Mourid, M., Ngaido, T., et al., 2003. The Development of Integrated Crop-Livestock Production Systems in the Low Rainfall Areas of Mashreq and Maghreb.

[113] Losada, H.R., Vieyra, J.E., Luna, L., et al., 2017. Economic Indicators, Capacity of the Ecosystem of Prickly Pear Cactus (Opuntia Megacantha) and Environmental Services in Teotihuacan, México to Supply Urban Consumption.. Journal of Agriculture and Environmental Sciences. DOI: https://doi.org/10.15640/JAES.V6N1A9.

[114] Hood, K., 2023. Prickly Pear Cacti: Food, Medicine, Legend, a Symbol of Mexico and a Favorite Florida Plant. Naples Botanical Garden.

[115] Dominick, J., 2019. Prickly Pear Cactus and Its' Cultural Significance. Medium.

[116] Yetman, D., 2011. The Cactus Metaphor. A Companion to Mexican History and Culture, John Wiley & Sons, Ltd.131–142. DOI: https://doi.org/10.1002/9781444340600.ch6.

[117] Wylie, L., 2023. Understories: Plants and Culture in the American Tropics. 1–272.

[118] Arba, M., 2000. Les Opuntias à Fruits Comestibles Dans Certaines Régions Du Maroc. Actes IIème Journée National, Maroc. 8.

[119] Pimienta-Barrios, E., 1993. Vegetable Cactus (Opuntia). Pulses and Vegetables, Chapman & Hall, London, 1993, 177–191.

[120] Staff, D., 2023. Prickly Pear: A Treasured Fruit of the Southwest, from Ancient Times to Modern Delights. DesertUSA.

[121] Alcántara-Zavala, A.E., de Dios Figueroa-Cárdenas, J., 2022. Shelf Life, Physicochemical and Antioxidant Properties of Red Cactus Pear Pulque Processed by Ohmic Heating and by Conventional Pasteurization. International Journal of Gastronomy and Food Science. 28, 100497. DOI: https://doi.org/10.1016/j.ijgfs.2022.100497

[122] Beinart, L., 2002. Prickly Pear in the Eastern Cape since the 1950s-Perspectives from Interviews. Kronos: Journal of Cape History. 28(1), 191–209.

[123] Ntsonge, S., Fraser, G., 2021. Shielding Rural Migrants from Unemployment-Induced Poverty: The Informal Prickly Pear Market. Journal of Human Ecology. 74(1–3), 8–19.

[124] Boujghagh, M., Chajia, L., 2001. Le Cactus: Outil de Gestion de La Sécheresse Dans Le Sud Marocain. Terre et Vie. 52, 1–7.

[125] El Kossori, R.L., Villaume, C., El Boustani, E., et al., 1998. Composition of Pulp, Skin and Seeds of Prickly Pears Fruit (Opuntia Ficus Indica Sp.). Plant Foods for Human Nutrition. 52(3), 263–270. DOI: https://doi.org/10.1023/A:1008000232406

[126] El-Mostafa, K., El Kharrassi, Y., Badreddine, A., et al., 2014. Nopal Cactus (Opuntia Ficus-Indica) as a Source of Bioactive Compounds for Nutrition, Health and Disease. Molecules. 19(9), 14879–14901. DOI: https://doi.org/10.3390/molecules190914879.

[127] Galati, E.M., Mondello, M.R., Giuffrida, D., et al., 2003. Chemical Characterization and Biological Effects of Sicilian Opuntia Ficus Indica (L.) Mill. Fruit Juice: Antioxidant and Antiulcerogenic Activity. Journal Of Agricultural And Food Chemistry. 51(17), 4903–4908. DOI: https://doi.org/10.1021/jf030123d

[128] García, F.H., Coll, L.A., Cano-Lamadrid, M., et al., 2020. Valorization of Prickly Pear [Opuntia Ficus-Indica (L.) Mill]: Nutritional Composition, Functional Properties and Economic Aspects. Invasive Species - Introduction Pathways, Economic Impact, and Possible Management Options. IntechOpen. DOI: https://doi.org/10.5772/intechopen.92009

[129] Valente, L.M., da Paixão, D., Do Nascimento, A.C., et al., 2010. Antiradical Activity, Nutritional Potential and Flavonoids of the Cladodes of Opuntia Monacantha (Cactaceae). Food Chemistry, 123(4), 1127–1131.

[130] Alimi, H., Hfaiedh, N., Bouoni, Z., et al., 2010. Antioxidant and Antiulcerogenic Activities of Opuntia Ficus Indica f. Inermis Root Extract in Rats. Phytomedicine. 17(14), 1120–1126. DOI: https://doi.org/10.1016/j.phymed.2010.05.001

[131] Kuti, J.O., 2004. Antioxidant Compounds from Four Opuntia Cactus Pear Fruit Varieties. Food chemistry. 85(4), 527–533.

[132] Butera, D., Tesoriere, L., Gaudio, F.D., et al., 2002. Antioxidant Activities of Sicilian Prickly Pear (Opuntia ficus indica) Fruit Extracts and Reducing Properties of Its Betalains: Betanin and Indicaxanthin. 8.

[133] Ramírez-Arpide, F.R., Demirer, G.N., Gallegos-Vázquez, C., et al., 2018. Life Cycle Assessment of Biogas Production through Anaerobic Co-Digestion of Nopal Cladodes and Dairy Cow Manure. Journal of Cleaner Production, 172, 2313–2322. DOI: https://doi.org/10.1016/j.jclepro.2017.11.180

[134] Santos, T. do N., Dutra, E.D., Gomes do Prado, A., et al., 2016. Potential for Biofuels from the Biomass of Prickly Pear Cladodes: Challenges for Bioethanol and Biogas Production in Dry Areas. Biomass and Bioenergy. 85, 215–222. DOI: https://doi.org/10.1016/j.biombioe.2015.12.005.

[135] Kuloyo, O.O., du Preez, J.C., García-Aparicio, M. del P., et al., 2014. Opuntia Ficus-Indica Cladodes as Feedstock for Ethanol Production by Kluyveromyces Marxianus and Saccharomyces Cerevisiae. World J Microbiol Biotechnol. 30(12), 3173–3183. DOI: https://doi.org/10.1007/s11274-014-1745-6

[136] Da Silva, J.B., Santos Júnior, E.P., Siqueira e Silva, S.M., et al., 2024. Economic and Energetic Analysis of Cactus Pear Biomass Production Systems with Increasing Levels of Technological Intensity. Industrial Crops and Products. 208, 117883. DOI: https://doi.org/10.1016/j.indcrop.2023.117883

[137] Humphries, T., Campbell, S., Florentine, S., 2022. Challenges Inherent in Controlling Prickly Pear Species; a Global Review of the Properties of Opuntia Stricta, Opuntia Ficus-Indica and Opuntia Monacantha. Plants. 11(23), 3334. DOI: https://doi.org/10.3390/plants11233334.

[138] Mann, J., 1969. Cactus-Feeding Insects and Mites. Bulletin of the United States National Museum.

[139] Zimmermann, H.G., Moran, V.C., Hoffmann, J.H., 2000. The Renowned Cactus Moth, Cactoblastis Cactorum: Its Natural History and Threat to Native Opuntia Floras in Mexico and the United States of America. Diversity and Distributions. 6(5), 259–269. DOI: https://doi.org/10.1046/j.1472-4642.2000.00088.x.

[140] Moran, V.C., 1980. Interactions between Phytophagous Insects and Their Opuntia Hosts.

[141] Dodd, A.P., 1940. The Biological Campaign against Prickly-Pear.

[142] Pettey, F.W., 1948. The Biological Control of Prickly Pears in South Africa.

[143] Hoffmann, J.H., Zimmermann, H.G., 1990. Ovipositional and Feeding Habits in Cactophagous Pyralids: Predictions for Biological Control of Cactus Weeds in Southern Africa.

[144] Julien, M.H., Griffiths, M.W., 1998. Biological Control of Weeds. A world catalogue of agents and their target weeds. 4.

Downloads

How to Cite

Dramane Yewaga Koalaga, Zerhoune Messaoudi, Mohammed Ibriz, & Lhoussain Ait Haddou. (2025). Prickly Pear Cactus : An Excellent Crop to Mitigate Climate Change. Research in Ecology, 7(3), 182–198. https://doi.org/10.30564/re.v7i3.8778