Tensioned Auxetic Structures Manual Calculus

Authors

  • Mª Dolores Álvarez Elipe CEIPSO Salvador Dalí

DOI:

https://doi.org/10.30564/jaeser.v2i1.503

Abstract

Auxetic materials have several properties very useful to be applied to architecture structures. This paper is aimed to test structurally a specific auxetic structure model. This hypothesis will be check: if auxetic materials have innovative properties in nanoscale then they will also have these properties in macroscale. But there are some differences for these different scales. In the nanoscale auxetic structures have rigid knots with flexible bars, but in the scale of architecture they will have articulated knots and a cable that stabilizes the set.

A unity of the hexagonal re-entrant structure will be tested in order to obtain their structural characteristics. The application of this structure and their behavior in architecture are not yet known, that’s why this auxetic model will become an experimental model to establish a structural evaluation of one of the most innovative auxetic geometries, to apply to the construction of new architectures. The results of research and investigation will become apparent by their structural evaluation, through the utilization of manual calculus.

The re-entrant hexagonal geometry provides a strong foundation for research of application of new structural systems on the production of architecture, while identifying transformations that new geometries and their application techniques, will contribute to the development and divulgation of new spatial and typological solutions. That is the reason to claim a detailed analysis to advance on the design and construction of new architectures.

Keywords:

Auxetic; Structures; Articulated Knots; Cable; Stabilize; Hexagonal Re-entrant Structure; Innovative; Manual Calculus

References

[1] Alderson A. A triumph of lateral thought. Chemistry & Industry 1999; pp. 384-391.

[2] Bhullar SK, Wegner JL, Mioduchowski A. Auxetic behavior of a thermoelastic layered plate. Journal of Engineering and Technology Research 2010; Vol. 2(9), pp. 161-167.

[3] Yanping Liu, Hong Hu. A review on auxetic structures and polymeric materials. Scientific Research and Essays 2010; Vol. 5 (10), pp. 1052-1063.

[4] Yan-Lin Guo, Peng-Peng Fu, Peng Zhou, Jing-Zhong Tong. Elastic buckling and load resistance of a single cross-arm pre-tensioned cable stayed buckling-restrained brace. Engineering Structures 2016; 126: 516–530.

[5] Álvarez MD, Anaya J. Development of transformable structures from auxetic geometries. New proposals for transformable architecture, engineering and design. In the honor of Emilio Pérez Piñero. School of Architecture Seville, Spain. Ed. Starbooks 2013; pp. 269-274.

[6] Lakes R. Foam Structures with a Negative Poisson's Ratio. Science 1987; 235: 1038- 1040.

[7] Scarpa F, Tomlin PJ. On the transverse shear modulus of negative Poisson's ratio lattice structures. Fatigue & Fracture of Engineering Materials & Structures 2000; 23: 717-720.

[8] Scarpa F, Tomlinson G. Theoretical characteristics of the vibration of sandwich plates with in-plane negative Poisson's ratio values. Journal of Sound and Vibration 2000; 230: 45-67.

[9] Lakes RS, Elms K. Indentability of Conventional and Negative Poisson's Ratio Foams. Journal of Composite Materials 1993; 27: 1193-1202.

[10] Alderson KL, Simkins VR, Coenen VL. How to make auxetic fibre reinforced composites. Physica Status Solidi (b) 2009; 57: 1865-1874.

[11] Lakes RS. Design Considerations for Materials with Negative Poisson's Ratios. Journal of Mechanical Design 1993; 115: 676-700.

[12] Bezazi A, Scarpa F. Tensile fatigue of conventional and negative Poisson's ratio open cell PU foams. International Journal of Fatigue 2009; 31: 488-494.

[13] Bezazi A, Scarpa F. Mechanical behaviour of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of Fatigue 2007; 29: 922-930.

[14] Scarpa F, Pastorino P, Garelli A. Auxetic compliant flexible PU foams: static and dynamic properties. Physica Status Solidi (b) 2005; 242: 681-684.

[15] Scarpa F, Ciffo LG, Yates LR. Dynamic properties of high structural integrity auxetic open cell foam. Smart Materials and Structures 2004; 13: 49-56.

[16] Griffin, A. C., Kumar, S., & Mc Mullan, P. J. Textile fibers engineered from molecular auxetic polymers. National Textile Center Research Briefs–Materials Competency 2005; 1-2.

[17] Bianchi, M., Scarpa, F., & Smith, C. W. Shape mem-ory behaviour in auxetic foams: mechanical proper-ties. Acta Mater 2010; 58, 858-65.

[18] Tan, T. W., Douglas, G. R., Bond, T., & Phani, A. S. Compliance and longitudinal strain of cardiovascular stents: influence of cell geometry. J. Med. 2011; Dev. 5 041002.

[19] Scarpa, F., Jacobs, S., Coconnier, C., Toso, M., & Di Maio, D. Auxetic shape memory alloy cellular struc-tures for deployable satellite antennas: design, manu-facture and testing. EPJ Web of Conf 2010; 6 27001.

[20] Edmondson AC. A Fuller Explanation: The Synerget-ic Geometry of R. Buckminster Fuller. Cambridge, Mass, (USA): Birkhäuser Boston 1987.

[21] Tibert G. Numerical Analyses of Cable Roof Struc-tures. Unpublished Licentiate thesis. Royal Institute of Technology, Stockholm (Sweden), 1999.

[22] López JM. Puente sobre el embalse de Barrios de Luna León/España. Informes de la Construcción. Vol. 36, 359-360, abril-mayo, 1984.

[23] Burstow R. Symbols for ’51, the Royal Festival Hall, Skylon and Sculptures for the Festival of Britain, The Ballroom, Main Foyer, Royal Festival Hall, London, 2 March – 21 April 1996.

[24] Cruickshank D. The 1951 Dome of Discovery, Lon-don. The Architectural Review, 1995; No.197.1175, pp.80-85.

[25] Francis AJ. Introducing Structures, Oxford: Pergam-mon Press, 1980.

[26] Drew P. Frei Otto. Form and structure, London: Cros-by Lockwood Staples, 1976.

[27] Pugh A. An Introduction to Tensegrity, Berkeley, Cal-ifornia: University of California Press, 1976.

[28] Williams WO. A Primer on the Mechanics of Tensegrity Structures, Pittsburgh (USA), 2003

[29] Geiger DH. Roof structure, U.S. Patent No. 4,736,553, April 12, 1988.

[30] Motro R. Tensegrity: Structural Systems for the Fu-ture, London: Kogan Page Science, 2003.

[31] Fuller RB. Suspension Building, U.S. Patent No. 3,139,957, July 7, 1964.

[32] Gossen PA, Chen D, Mikhlin E. The First Rigidly Clad "Tensegrity" Type Dome, The Crown Coliseum, Fayetteville, North Carolina, USA: Geiger Engineers, 1997.

[33] Dirección General de Arquitectura, Vivienda y Suelo. Documento Básico SE-A del CTE. Seguridad Estruc-tural. Acero. Texto modificado por RD 1371/2007, de 19 de octubre (BOE 23/10/2007) y corrección de errores (BOE 25/01/2008)

[34] Dirección General de Arquitectura, Vivienda y Sue-lo. Documento Básico SE-AE del CTE. Seguridad Estructural. Acciones en la edificación. Abril 2009.

[35] Mirhosseini, R.T. & Shamsadinei, M. (2018). Simula-tion of Self-compacting Concrete Properties Contain-ing Silica Quicksand Using ANN Models. Journal of Architectural Environment & Structural Engineering Research. Vol.1, No 1: 1-9 DOI: https://doi.org/10.30564/jaeser.v2i1.503

Downloads

How to Cite

Elipe, M. D. Álvarez. (2019). Tensioned Auxetic Structures Manual Calculus. Journal of Architectural Environment & Structural Engineering Research, 2(1), 32–40. https://doi.org/10.30564/jaeser.v2i1.503

Issue

Article Type

Review