-
2446
-
2252
-
2242
-
1713
-
1665
Influence of the 60 Hz Magnetic Field on the Airborne Microbial Distribution of Indoor Environments
DOI:
https://doi.org/10.30564/jasr.v3i3.2215Abstract
The aim of this work was to analyze the effect of the magnetic field generated by the household appliances on the airborne microbial surrounding these equipment located on indoor environments with particular interest in the environmental fungi. A simultaneous environmental study was carried out in locals of three different geographical places of Havana, Cuba, which have televisions, computers and an electric generator. The air samples were made by a sedimentation method using Malt Extract Agar. The concentration of total aerobic mesophilic as well as fungi and yeasts were determined in rainy and little rainy seasons by applying as factors: exposure time of dishes (5 to 60 min) and distance to the wall (0 and 1 m) at a height of 1 m above the floor. The predominant fungal genera were Cladosporium, Penicillium and Aspergillus. In the dishes that were placed at 0 and 0.5 m from the emitting sources were observed that some bacteria colonies formed inhibition halos, a great diversity of filamentous fungi and an increase in the mycelium pigmentation as well as the pigments excretion. In the rainy season, the highest amounts of fungi were obtained in all samples. In the little rain season the count of the Gram-negative bacilli increased three times the Gram-positive cocci.
Keywords:
Non-ionizing radiation; Appliances; Airborne mycobiota; Indoor environment; Index of microbial air; Magnetic fieldReferences
[1] Bartra J. Mapa fúngico y estudio multicéntrico de sensibilización a hongos en Cataluña. Alergol Inmunol Clin., 2003, 18(Extraordinario Núm.3): 106-121.
[2] Díaz MJ, Gutiérrez A, González MC, Vidal G, Zaragoza RM, Calderón C. Caracterización aerobiológica de ambientes intramuro en presencia de cubiertas vegetales. Rev Int Contam Ambient., 2010, 26: 279-289.
[3] Rojas TI. Diversidad fúngica en ambientes interiores y exteriores en áreas urbanas de ciudad de La Habana. Doctoral Thesis in Biological Sciences. Faculty of Biology, Havana University, Cuba, 2011.
[4] Pasquarella C, Pitzurra O, Savino A. The index of microbial air contamination. J Hosp Infect., 2000, 46: 241-256, DOI: https://doi.org/10.1053/jhin.2000.0820
[5] Martínez M, Fernández A, Molina E, García R. Grupos electrógenos y su impacto ambiental. Hig Sanid Ambient., 2007, 7: 217-221.
[6] Gómez A. Análisis de la eficacia de las medidas preventivas, correctoras y compensatorias de suelos, hidrología, ruido y patrimonio histórico para los proyectos de autovías en España. Thesis of Doctor in Sciences, 2007, http://www.oa.upm.es/749/1/AdoracionGomezSanchez.pdf (Accessed July 24, 2014).
[7] Llamo HS. Influencia de la disposición de las fases de una línea doble circuito en su impacto ecológico. Campo magnético. Energética, 2006, 27(1): 3-8.
[8] Castro M, Perera RC, Pedrouzo J, Escobar A. Medición de campos electromagnéticos en redes de distribución: experiencias en Cuba. Energética, 2006, 27(1): 40-45.
[9] Curotto M, Magri S, Vidal M. Declaración de impacto ambiental de grupos electrógenos de respaldo minera Michilla, en Mejillones, Chile, 2008, http://www.e-seia.cl/archivos/R_01100715_SRK_MICHILLA_CONAMA.pdf (Accessed July 24, 2014).
[10] Molina E, Cuba D. Contaminación del aire interior en un proyecto de viviendas con climatización centralizada. Rev Cubana Hig Epidemiol., 2006, 44(3): 12-16.
[11] Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. App Environ Microbiol., 2002, 68(4): 1743-1753, DOI: https://doi.org/10.1128/AEM.68.4.1743–1753.2002
[12] Rodríguez GS, Sauri MR, Peniche I. Pacheco J. Ramírez JM. Aerotransportables viables en el área de tratamiento y disposición final de residuos sólidos municipales de Mérida, Yucatán. Ingeniería, 2005, 9(3): 19-29.
[13] Pasquarella C, Sansebastiano GE, Saccani E, Ugolotti M, Mariotti F, Boccuni C, Signerolli C, Fornari L, Alessandrini C, Albertini R. Proposal for an integrated approach to microbial environmental monitoring in cultural heritage: experience at the Correggio exhibition in Parma. Aerobiologia, 2011, 27: 203-211, DOI: https://doi.org/10.1007/s10453-010-9189-4
[14] Frączek K, Górny RL. Microbial air quality at Szczawnica sanatorium, Poland. Ann Agric Environ Med., 2011, 18: 63-71.
[15] Rojas TI, Aira MJ, Batista A, Cruz LC, González S. Fungal biodeterioration in historic building of Havana (Cuba). Grana, 2012, 51: 44-51, DOI: https://doi.org/10.1080/00173134.2011.643920
[16] Gent JF. Correlation of levels of house hold mold with respiratory symptoms in infants. Alergol Inmunol Clin., 2003, 18(Extraordinario Núm.3): 112-113.
[17] Zhdanova N, Tugay T, Dighton J, Zheltonozhsky V, Mcdermott P. Ionizing radiation attracts soil fungi. Mycol Res., 2004, 8: 1089-1096, DOI: https://doi.org/10.1017/S0953756204000966
[18] Dadachova E, Casadevall A. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbio., 2008, 11: 525-531, DOI: https://doi.org/10.1016/j.mib.2008.09.013
[19] Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD. (2007) Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. Plos ONE, 2007, 2(5): e457. DOI: https://doi.org/10.1371/journal.pone.0000457
[20] Anaya M, Castro M, Borrego SF, Cobo HC. Influencia del campo magnético sobre la calidad microbiológica del aire en interiores. Rev Soc Venez Microbio., 2015, 35: 47-52.
[21] Jamieson KS, Jamieson SS. Electromagnetic phenomena, microbial infection, charged oxygen and environmental air quality. In: Proceedings of VALDOR (Values in decisions on risk), pp. 281-283. Congrex Sweden AB/Informationsbolaget Nyberg & Co., Stockholm, Sweden, 14-18 May 2006.
[22] Henriquez D. Magnetismo, 2009, http://www.electromagnetismo221.blogspot.com (Accessed Abril 15, 2012).
[23] Leach CM. Evidence for an electrostatic mechanism in spore discharge by Drechsrela turcica. Phytopathology, 1980, 70: 206-213.
[24] Shimizu K, Matsuda Y, Nonomura T, Ikeda H, Tamura N, Kusakari S. Dual protection of hydroponic tomatoes from rhizosphere pathogens Ralstonia solanacearum and Fusarium oxysporum f. sp. radicis-lycopersici and airborne conidia of Oidium neolycopersici with an ozone-generative electrostatic spore precipitator. Plant Pathol., 2007, 56: 987-997, DOI: https://doi.org/10.1111/j.1365-3059.2007.01681.x
[25] Kakutani K, Matsuda Y, Kimbara J, Osamura K, Kusakari S. Practical application of an electric field screen to an exclusion of flying insect pests and airborne fungal conidia from greenhouses with a good air penetration. J Agric Sci., 2012, 4: 51-60, DOI: https://doi.org/10.5539/jas.v4n5p51
[26] Takikawa Y, Matsuda Y, Nonomura T, Kakutani K, Kimbara J, Osamura K. Electrostatic guarding of bookshelves for mould-free preservation of valuable library books. Aerobiologia, 2014, 30: 435-444, DOI: https://doi.org/10.1007/s10453-014-9340-8
[27] Bogomolova EV, Kirtsideli I. Airborne fungi in four stations of the St, Petersburg underground railway system. Int Biodeter Biodegr., 2009, 63: 156-160, DOI: https://doi.org/10.1016/j.ibiod.2008.05.008
[28] Awad AH, Mawla HF. Sedimentation with the Omeliansky formula as an accepted technique for quantifying airborne fungi. Pol J Environ Stud., 2012, 21: 1539-1541.
[29] Borrego S, Lavin P, Perdomo I, Gómez de Saravia S, Guiamet, P. Determination of indoor air quality in archives and the biodeterioration of the documentary heritage. ISRN Microbiology, 2012, DOI: https://doi.org/10.5402/2012/680598
[30] Ellis MB. More Dematiaceous hyphomycetes. England: Commonwealth Mycological Institute, 1976.
[31] Barnett HL, Hunter BB. Illustrated genera of Imperfect fungi. 4th edn. Minneapolis: APS Press, 1998.
[32] Klich MA, Pitt JI. A laboratory guide to the common Aspergillus species and their teleomorphs, Australia: CSIRO, Division of Food Processing, 1994.
[33] Pitt JI. A laboratory guide to common Penicillium species. 3rd ed. Australia: CSIRO, Division of Food Processing, 2000.
[34] Abdel H, Ayesh AM, Abdel RM, Mawla HF. Fungi and some mycotoxins producing species in the air of soybean and cotton mills: a case study. Atmos Pollut Res., 2012, 3: 126-131, DOI: https://doi.org/10.5094/APR.2012.012
[35] Anaya M, Borrego SF, Cobo HC, Valdés O, Molina, A. Aeromicobiota de un depósito de alimentos en La Habana, Cuba. AUGMDOMUS, 2014, 6: 95-110.
[36] Anaya M, Borrego SF, Gámez E, Castro M, Molina A, Valdés O. Viable fungi in the air of indoor environments of the National Archive of the Republic of Cuba. Aerobiologia, 2016, 32: 513-527, DOI: https://doi.org/10.1007/s10453-016-9429-3
[37] Terrés-Speziale AM. Manejo de la contaminación ambiental intramuros por medio de la generación de iones aéreos electronegativos. Rev Mex Patol Clin Med Lab., 2006, 53(1): 29-38.
[38] Chao HJ, Milton DK, Schwartz J, Burge HA. Dustborne fungi in large office buildings. Mycopathologia, 2001, 154(2): 93-106.
[39] Karbowska-Berent J, Górny RL, Strzelczyk AB, Wlaz A. (2011) Airborne and dust borne microorganisms in selected Polish libraries and archives. Build Environ., 2011, 46(10): 1872-1879, DOI: https://doi.org/10.1016/j.buildenv.2011.03.007
[40] Berg A, Berg H. Influence of ELF sinusoidal electromagnetic fields on proliferation and metabolite yield of fungi. Electromagn Biol Med., 2006, 25(1): 71-77, DOI: https://doi.org/10.1080/15368370600581947
[41] Gao M, Zhang J, Feng H. Extremely low frequency magnetic field effects on metabolite of Aspergillus niger. Bioelectromagnetics, 2011, 32(1): 73-78, DOI: https://doi.org/10.1002/bem.20619
[42] Cordero RJB, Casadevall A. Functions of fungal melanin beyond virulence. Fungal Biol Rev., 2017, 31(2): 99-112, DOI: https://doi.org/10.1016/j.fbr.2016.12.003
[43] Rodríguez JC. Evaluación aeromicrobiológica del depósito del Centro de Documentación del Museo Nacional de la Música de Cuba. Ge-conservación, 2016, (9): 117-126.
[44] Borrego S, Perdomo I. Airborne microorganisms cultivable on naturally ventilated document repositories of the National Archive of Cuba. Environ Sci Pollut Res., 2016, 23(4): 3747-3757, DOI: https://doi.org/10.1007/s11356-015-5585-1
[45] Borrego S, Molina A. Fungal assessment on storerooms indoor environment in the National Museum of Fine Arts, Cuba. Air Qual Atmos Health., 2019, 12: 1373-1385, DOI: https://doi.org/10.1007/s11869-019-00765-x
[46] Reanprayoon P, Yoonaiwong W. Airborne concentrations of bacteria and fungi in Thailand border marker. Aerobiologia, 2012, 28: 49-60, DOI: https://doi.org/10.1007/s10453-011-9210-6
[47] Chen Y-P, Cui Y, Dong J-G. Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta museum, Xi'an, China, during the “Oct. 1” Gold Week period of 2006. Environ Sci Pollut Res., 2010, 17: 478-485, DOI: https://doi.org/10.1007/s11356-009-0161-1
[48] Pinheiro AC, Sequeira SO, Macedo MF. Fungi in archives, libraries, and museums: a review on paper conservation and human health. Crit Rev Microbiol., 2019, DOI: https://doi.org/10.1080/1040841X.2019.1690420
[49] Borrego S, Molina A. Behavior of the cultivable airborne mycobiota in air-conditioned environments of three Havanan archives, Cuba. Journal of Atmospheric Science Research, 2020, 3(1): 16-28, DOI: https://doi.org/10.30564/jasr.v3i1.1910
[50] Almaguer M, Rojas-Flores TI. Aeromicota viable de la atmósfera de La Habana, Cuba. Nova Acta Científica Compostelana (Bioloxía), 2013, 20: 35-45.
[51] Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI. (2014) Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters. Int J Biometeorol, 2014, 58: 1459-1470, DOI: https://doi.org/10.1007/s00484-013-0748-6
[52] Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Fernandez-Gonzalez M, Rojas-Flores TI. Thirty-four identifiable airborne fungal spores at Havana, Cuba. Ann Agric Environ Med., 2015, 22: 220-225, DOI: https://doi.org/10.5604/12321966.1152068
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2020 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.