Microclimatic Zonation and Climatic Variability of Sikkim Himalaya
DOI:
https://doi.org/10.30564/jasr.v7i3.6684Abstract
The Köppen classification of climate integrates precipitation and temperature information with natural vegetation patterns to create a precise representation of any particular region's climate. This integration depends on the empirical relationship of climate and vegetation, which indicates that distinct locations in the same class have similar vegetation attributes. Köppen climatic classification factors are explained and Sikkim's climate characteristics are regionalized based on it. The method for making representations of air temperatures and precipitation has been described, and an illustration of Sikkim's climatic zones with variability is generated as a result of these changes. The geographic pattern of climatic types and subtypes in Sikkim has been briefly addressed using an available high-resolution gridded dataset (ERA5-Land). This is described that the constraints of microclimatic zonation emanate from the empirical prerequisite of climate classifications, as well as the nature of data selection and the methodologies employed for climate variability analysis and classification. Based on the Köppen classification for the long term (1980–2021), the Sikkim Himalaya contains three primary climatic classes, particularly ETc (cold, tundra, and cool summer), Cfc (moderately warm, humid, and cool summer), and Cfb (moderately warm, humid, and warm summer). Climate variability on the basis of temperature and precipitation change with respect to 1980–2021 over the entire Sikkim Himalaya concludes that the climatic pattern of the Sikkim has been changed from cold-dry to warm-wet. The alteration in the corresponding climatic pattern is further supported by changes in LULC and NDVI. The results suggest that the precipitation change in the past two decades (1980–2000) is negative, while a significant positive change has been noticed in the recent two decades (2001–2021). Subsequently, the number of extremely wet days decreases in the entire ETc and Cfc climate zones. Regardless, the southern part of the Cfb climatic zone has experienced an increase in extremely wet days. This study's findings will significantly contribute to the development of future policies and initiatives by providing insights crucial for achieving sustainable development, environmental protection, and climate change adaptation.
Keywords:
Climate variability; Köppen classification; Himalaya; ERA5-Land; Climate change impacts; ExtremesReferences
[1] Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., et al., 2010. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather, Climate, and Society. 2(2), 148–167. DOI: https://doi.org/10.1175/2010WCAS1010.1
[2] Dourado, C.D.S., Oliveira, S.R.D.M., Avila, A.M.H.D., 2013. Analysis of homogeneous zones in precipitation time series in the State of Bahia. Bragantia. 72(2), 192–198. DOI: https://doi.org/10.1590/S0006-87052013000200012
[3] Aparecido, L.E.D.O., Rolim, G.D.S., Richetti, J., et al., 2016. Köppen, Thornthwaite and Camargo climate classifications for climatic zoning in the State of Paraná, Brazil. Ciência e Agrotecnologia. 40(4), 405–417. DOI: https://doi.org/10.1590/1413-70542016404003916
[4] Shaw, R., Luo, Y., Cheong, T.S., et al., 2022: Asia. Climate Change 2022: Impacts, adaptation and vulnerability. Cambridge University Press: Cambridge, UK and New York, NY, USA. pp. 1457–1579. DOI: https://doi.org/10.1017/9781009325844.012
[5] de Souza Rolim, G., de O. Aparecido, L.E., 2016. Camargo, Köppen and Thornthwaite climate classification systems in defining climatical regions of the state of São Paulo, Brazil. International Journal of Climatology. 36(2), 636–643. DOI: https://doi.org/10.1002/joc.4372
[6] Bieniek, P.A., Bhatt, U.S., Thoman, R.L., et al., 2012. Climate divisions for Alaska based on objective methods. Journal of Applied Meteorology and Climatology. 51(7), 1276–1289. DOI: https://doi.org/10.1175/JAMC-D-11-0168.1
[7] Gallardo, C., Gil, V., Hagel, E., et al., 2013. Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen-Trewartha classification. International Journal of Climatology. 33(9), 2157–2166. DOI: https://doi.org/10.1002/joc.3580
[8] Xin, L., 2023. Proposal of a new climate classification based on Köppen and Trewartha. International Journal of Climatology. DOI: https://doi.org/10.31223/X5CM1D
[9] Kottek, M., Grieser, J., Beck, C., et al., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift. 15(3), 259–263. DOI: https://doi.org/10.1127/0941-2948/2006/0130
[10] Beck, H.E., Zimmermann, N.E., McVicar, T.R., et al., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data. 5, 180214. DOI: https://doi.org/10.1038/sdata.2018.214
[11] Cui, D., Liang, S., Wang, D., 2021. Observed and projected changes in global climate zones based on Köppen climate classification. Wiley Interdisciplinary Reviews: Climate Change. 12(3), e701. DOI: https://doi.org/10.1002/wcc.701
[12] De Castro, M., Gallardo, C., Jylha, K., et al., 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Climatic Change. 81(Suppl 1), 329–341. DOI: https://doi.org/10.1007/s10584-006-9224-1
[13] Kim, H.J., Wang, B., Ding, Q., et al., 2008. Changes in arid climate over North China detected by the Köppen climate classification. Journal of the Meteorological Society of Japan. Ser. II. 86(6), 981–990. DOI: https://doi.org/10.2151/jmsj.86.981
[14] Gabler, R.E., Peter, J.F., Trapson, M., et al., 2009. Physical geography. Brooks/Cole: Belmont, USA.
[15] Alvares, C.A., Stape, J.L., Sentelhas, P.C., et al., 2013. Köppen’s climate classification map for Brazil. Meteorologische zeitschrift. 22(6), 711–728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
[16] Bhatnagar, M., Mathur, J., Garg, V. (editors), 2019. Climate zone classification of India using new base temperature. Proceedings of the 16th IBPSA Conference; 2019 Sep 2–4; Rome, Italy. p. 4841–4845. DOI: https://doi.org/10.26868/25222708.2019.211159
[17] Dilinuer, T., Yao, J.Q., Chen, J., et al., 2021. Regional drying and wetting trends over Central Asia based on Köppen climate classification in 1961–2015. Advances in Climate Change Research. 12(3), 363–372. DOI: https://doi.org/10.1016/j.accre.2021.05.004
[18] Huang, J., Li, Y., Fu, C., et al., 2017. Dryland climate change: Recent progress and challenges. Reviews of Geophysics. 55(3), 719–778. DOI: https://doi.org/10.1002/2016RG000550
[19] Cheng, G., Liu, T., Wang, S., et al., 2023. Bivariate hazard assessment of combinations of dry and wet conditions between adjacent seasons in a climatic transition zone. Atmosphere. 14(3), 437. DOI: https://doi.org/10.3390/atmos14030437
[20] Pei, F., Zhou, Y., Xia, Y., 2021. Application of normalized difference vegetation index (NDVI) for the detection of extreme precipitation change. Forests. 12(5), 594. DOI: https://doi.org/10.3390/f12050594
[21] Nagai, S., Nasahara, K.N., Muraoka, H., et al., 2010. Field experiments to test the use of the normalized-difference vegetation index for phenology detection. Agricultural and Forest Meteorology. 150(2), 152–160. DOI: https://doi.org/10.1016/j.agrformet.2009.09.010
[22] Parida, B.R., Kumar, P., Chakraborty, J.S., et al., 2022. Dynamics of land use/land cover over Indian Himalayan region (IHR) using satellite data from 1985 to 2015 coupled with local perceptions. Handbook of Himalayan ecosystems and sustainability. CRC Press: Boca Raton. pp. 3–22.
[23] Kumar, P., Patel, A., Rai, J., et al., 2024. Environmental challenges and concurrent trend of weather extremes over Uttarakhand Himalaya. Theoretical and Applied Climatology. 155(2), 1217–1246. DOI: https://doi.org/10.1007/s00704-023-04690-z
[24] Bashir, O., Bangroo, S.A., Guo, W., et al., 2022. Simulating spatiotemporal changes in land use and land cover of the north-western Himalayan Region using Markov chain analysis. Land. 11(12), 2276. DOI: https://doi.org/10.3390/land11122276
[25] Ghosh, S., Lata, R., Gouda, K.C., 2023. Monitoring the role of temporal land cover changes on mountain hazard susceptibility in Beas Valley, Himachal Pradesh, India. EGU General Assembly 2023; 2023 Apr 24–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-3919
[26] Kashyap, R., Pandey, A.C., Parida, B.R., 2022. Climate forcing on photosynthetic variability across various relief zones in the Himalaya. Handbook of Himalayan ecosystems and sustainability. CRC Press: Boca Raton. pp. 245–262.
[27] Shafiq, M.ul, Tali, J.A., Islam, Z.ul, et al., 2022. Changing land surface temperature in response to land use changes in Kashmir valley of northwestern Himalayas. Geocarto International. 37(27), 18618–18637. DOI: https://doi.org/10.1080/10106049.2022.2142968
[28] Sharma, E., 1992. Integrated watershed management: A case study in Sikkim Himalaya (No. 2). G.B. Pant Institute of Himalayan Environment & Development: Uttarakhand.
[29] Sharma, A.K., Joshi, V., Parkash, S., et al., 2009. Land Use Pattern mapping using Remote Sensing and GIS in Gangtok area, Sikkim Himalaya, India. GIS development. net. pp.1–2.
[30] Sharma, N., Das, A.P., Shrestha, D.G., 2015. Landuse and landcover mapping of East District of Sikkim using IRSP6 Satellite Imagery. Pleione. 9(1), 193–200.
[31] Mishra, P.K., Rai, A., Rai, S.C., 2020. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science. 23(2), 133–143. DOI: https://doi.org/10.1016/j.ejrs.2019.02.001
[32] Kumar, P., Sharma, K., Malu, A., et al., 2023. Measurement report: Intra-annual variability of black/brown carbon and its interrelation with meteorological conditions over Gangtok, Sikkim. EGUsphere. DOI: https://doi.org/10.5194/egusphere-2023-702
[33] Uthaman, M., Singh, C., Singh, A., et al. (editors), 2023. Seismicity and active tectonics: New insights from Sikkim Himalaya. EGU General Assembly 2023; 2023 Apr 24–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-343
[34] Upadhyay, A., Rai, S.C., 2023. Climate change analysis in Rangit Basin of Sikkim Himalaya. The Oriental Anthropologist. 23(1), 103–130. DOI: https://doi.org/10.1177/0972558X221147205
[35] Latwal, A., Sah, P., Sharma, S., et al., 2023. Relationship between timberline elevation and climate in Sikkim Himalaya. Ecology of Himalayan Treeline Ecotone. Springer: Singapore. DOI: https://doi.org/10.1007/978-981-19-4476-5_4
[36] Shukla, A., Garg, P.K., Srivastava, S., 2018. Evolution of glacial and high-altitude lakes in the Sikkim, Eastern Himalaya over the past four decades (1975–2017). Frontiers in Environmental Science. 6, 81. DOI: https://doi.org/10.3389/fenvs.2018.00081
[37] Dash, S.K., Sharma, N., Pattnayak, K.C., et al., 2012. Temperature and precipitation changes in the north-east India and their future projections. Global and Planetary Change. 98–99, 31–44. DOI: https://doi.org/10.1016/j.gloplacha.2012.07.006
[38] Bhasin, M.K., Kumar, V., Sehgal, A., 1984. Impact of Human Activities on the Ecosystem and Vice-Versa with Reference to the Sikkim-Himalaya MAB (Man and Biosphere) Programme, Unesco. Mountain Research and Development, pp.267–271. DOI: https://doi.org/10.2307/3673146
[39] Chowdhury, A., De, S.K., Sharma, M.C., et al. (editors), 2022. Glacial Lakes in the Chhombo Chhu Watershed (Sikkim Himalaya, India): Inventory, Classification, Evolution, and Potential GLOFs Assessment. 10th International Conference on Geomorphology; 2022 Sep 12–16; Coimbra, Portugal. DOI: https://doi.org/10.5194/icg2022-19
[40] Basu, R., Misra, G., Sarkar, D., 2021. A remote sensing-based analysis of climate change in Sikkim supported by evidence from the field. Journal of Mountain Science. 18(5), 1256–1267. DOI: https://doi.org/10.1007/s11629-020-6534-0
[41] Kumar, P., Sharma, K., 2023. Snowfall shift and precipitation variability over Sikkim Himalaya attributed to elevation-dependent warming. Journal of Atmospheric Science Research. 6(4). DOI: https://doi.org/10.30564/jasr.v6i4.5854
[42] Singh, T., Saha, U., Prasad, V.S., et al., 2021. Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS AND ERA5) against rainfall observations for indian region. Atmospheric Research. 259, 105679. DOI: https://doi.org/10.1016/j.atmosres.2021.105679
[43] Lal, P., Singh, G., Das, N.N., et al., 2022. Assessment of ERA5-land volumetric soil water layer product using in situ and SMAP soil moisture observations. IEEE Geoscience and Remote Sensing Letters. 19, 1–5. DOI: https://doi.org/10.1109/LGRS.2022.3223985
[44] Kumari, A., Raghuvanshi, A.S., Agarwal, A., 2023. Quantifying the reliability of reanalysis precipitation products across India. River, sediment and hydrological extremes: Causes, impacts and management. Disaster resilience and green growth. Springer: Singapore. DOI: https://doi.org/10.1007/978-981-99-4811-6_6
[45] Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., et al., 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data. 13(9), 4349–4383. DOI: https://doi.org/10.5194/essd-13-4349-2021
[46] Masek, J.G., Wulder, M.A., Markham, B., et al., 2020. Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment. 248, 111968. DOI: https://doi.org/10.1016/j.rse.2020.111968
[47] Vermote, E., Justice, C., Claverie, M., et al., 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. 185, 46–56. DOI: https://doi.org/10.1016/j.rse.2016.04.008
[48] Aster Global Digital Elevation Model Version 2–Summary of Validation Results [Internet]. Japan-US ASTER Science Team. Available from: https://lpdaac.usgs.gov/documents/220/Summary_GDEM2_validation_report_final.pdf
[49] Gridded Population of the World, Version 4 (GPWv4) [Internet]. Center for International Earth Science Information Network—CIESIN—Columbia University, 2016. Available from: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
[50] Milovanović, B., 2017. Climate regionalization of Serbia according to Köppen climate classification. Зборник радова Географског института "Јован Цвијић" САНУ. 67(2), 103–114.
[51] DeFries, R.S., Townshend, J.R.G., 1994. NDVI-derived land cover classifications at a global scale. International Journal of Remote Sensing. 15(17), 3567–3586. DOI: https://doi.org/10.1080/01431169408954345
[52] Gessesse, A.A., Melesse, A.M., 2019. Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. Extreme hydrology and climate variability. Elsevier: Amsterdam. pp. 81–92. DOI: https://doi.org/10.1016/B978-0-12-815998-9.00008-7
[53] Liang, J., Ren, C., Li, Y., et al., 2023. Using enhanced gap-filling and whittaker smoothing to reconstruct high spatiotemporal resolution NDVI time series based on Landsat 8, Sentinel-2, and MODIS Imagery. ISPRS International Journal of Geo-Information. 12(6), 214. DOI: https://doi.org/10.3390/ijgi12060214
[54] Rao, Y., Zhu, X., Chen, J., et al., 2015. An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM+ images. Remote Sensing. 7(6), 7865–7891. DOI: https://doi.org/10.3390/rs70607865
[55] Ibrahim, S., Kose, M., Adamu, B., et al., 2022. Remote sensing for assessing the ecological and socio-economic impacts of forest fire severity in Kozan District, Turkey. DOI: https://doi.org/10.21203/rs.3.rs-2093420/v1
[56] Saadat, H., Adamowski, J., Bonnell, R., et al., 2011. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 66(5), 608–619. DOI: https://doi.org/10.1016/j.isprsjprs.2011.04.001
[57] Alturk, B., Konukcu, F., 2020. Modeling land use/land cover change and mapping morphological fragmentation of agricultural lands in Thrace Region/Turkey. Environment, Development and Sustainability. 22, 6379–6404. DOI: https://doi.org/10.1007/s10668-019-00485-3
[58] Potapov, P., Hansen, M.C., Pickens, A., et al., 2022. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results. Frontiers in Remote Sensing. 3, 856903. DOI: https://doi.org/10.3389/frsen.2022.856903
[59] Kim, T.K., 2015. T test as a parametric statistic. Korean Journal of Anesthesiology. 68(6), 540–546. DOI: https://doi.org/10.4097/kjae.2015.68.6.540
[60] Tables of P-values for T- and Chi-square Reference Distributions [Internet]. University of South Carolina. Available from: http://math.arizona.edu/~piegorsch/571A/TR194.pdf
[61] Alashan, S., 2024. Non-monotonic trend analysis using Mann-Kendall with self-quantiles. Theoretical and Applied Climatology. 155(2), 901–910. DOI: https://doi.org/10.1007/s00704-023-04666-z
[62] Lornezhad, E., Ebrahimi, H., Rabieifar, H.R., 2023. Analysis of precipitation and drought trends by a modified Mann–Kendall method: A case study of Lorestan province, Iran. Water Supply. 23(4), 1557–1570. DOI: https://doi.org/10.2166/ws.2023.068
[63] Sheoran, R., Dumka, U.C. (editors), 2023. A new prewhitening approach for trend analysis in the autocorrelated time series. EGU General Assembly 2023; 2023 Apr 24–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-6544
[64] Mann, H.B., 1945. Nonparametric tests against trend. Econometrica. 13(3), 245–259. DOI: https://doi.org/10.2307/1907187
[65] Kendall, M.G., 1955. Further contributions to the theory of paired comparisons. Biometrics. 11(1), 43–62. DOI: https://doi.org/10.2307/3001479
[66] De, S.K., Chowdhury, A., Sharma, M.C. (editors), 2023. Inventory, classification, evolution, and potential outburst flood assessment of glacial lakes in the Chhombo Chhu Watershed (Sikkim Himalaya, India). EGU General Assembly 2023; 2023 Apr 24–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-17459
[67] Khawas, V., 2015. Pathways for climate resilient livelihoods: The case of a large Cardamom farming in the Dzongu Valley of the Tista River Basin, Sikkim Himalaya. Climate change in the Asia-Pacific Region. Climate change management. Springer: Cham. DOI: https://doi.org/10.1007/978-3-319-14938-7_19
[68] Sekhar, S., Singh, N., Singh, S.K., et al., 2023. Assessment of land utilization pattern and their relationship with surface temperature and vegetation in Sikkim, India. Advanced remote sensing for urban and landscape ecology. Advances in geographical and environmental sciences. Springer: Singapore. DOI: https://doi.org/10.1007/978-981-99-3006-7_7
[69] Jain, A., Rai, S.C., Sharma, E., 2000. Hydro-ecological analysis of a sacred lake watershed system in relation to land-use/cover change from Sikkim Himalaya. Catena. 40(3), 263–278. DOI: https://doi.org/10.1016/S0341-8162(00)00086-2
[70] Sah, P., Latwal, A., Sharma, S., 2023. Challenges of timberline mapping in the Himalaya: A case study of the Sikkim Himalaya. Ecology of Himalayan treeline ecotone. Springer: Singapore. DOI: https://doi.org/10.1007/978-981-19-4476-5_6
[71] Agrawal, A., Sharma, A.R., Tayal, S., 2014. Assessment of regional climatic changes in the Eastern Himalayan region: A study using multi-satellite remote sensing data sets. Environmental Monitoring and Assessment. 186, 6521–6536. DOI: https://doi.org/10.1007/s10661-014-3871-x
[72] Aggarwal, A., Mandal, A., 2021. Estimation of past and future mass balance of glaciers of Sikkim Himalaya using energy balance modelling approach and regional climatic projections. Journal of Climate Change. 7(3), 35–43. DOI: https://doi.org/10.3233/JCC210017
[73] Wang, R., Wang, Y., Yan, F., 2022. Vegetation growth status and topographic effects in frozen soil regions on the Qinghai-Tibet Plateau. Remote Sensing. 14(19), 4830. DOI: https://doi.org/10.3390/rs14194830
[74] Mitkari, K.V., Sofat, S., Arora, M.K., et al., 2023. Linking changes in Gangotri Glacier features derived at a large-scale with climate variability; EGU General Assembly 2023; 2023 Apr 24–28; Vienna, Austria. DOI: https://doi.org/10.5194/egusphere-egu23-252
[75] Beason, S.R., Kenyon T.R., Jost R.P., et al., 2023. Changes in glacier extents and estimated changes in glacial volume at Mount Rainier National Park, Washington, USA from 1896 to 2021. Natural Resource Report. NPS/MORA/NRR—2023/2524. National Park Service: Fort Collins, Colorado. DOI: https://doi.org/10.36967/2299328
[76] Srivastava, A., Umrao, S., Biswas, S., 2023. Exploring forest transformation by analyzing spatial-temporal attributes of vegetation using vegetation indices. International Journal of Advanced Computer Science and Applications. 14(5). DOI: https://doi.org/10.14569/IJACSA.2023.01405114
[77] Basnett, S., Kulkarni, A.V., 2019. Snow cover changes observed over Sikkim Himalaya. Environmental change in the Himalayan Region. Springer: Cham. DOI: https://doi.org/10.1007/978-3-030-03362-0_12
[78] Tambe, S., Arrawatia, M.L., Sharma, N., 2011. Assessing the priorities for sustainable forest management in the Sikkim Himalaya, India: A remote sensing-based approach. Journal of the Indian Society of Remote Sensing. 39, 555–564. DOI: https://doi.org/10.1007/s12524-011-0110-6
[79] Chakma, N., Biswas, S., 2022. Long period trend analysis of precipitation and temperature of west Sikkim, India. MAUSAM. 73(2), 413–422. DOI: https://doi.org/10.54302/mausam.v73i2.5484
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2024 Pramod Kumar, Kuldeep Dutta, Rakesh Kumar Ranjan, Nishchal Wanjari, Anil Kumar Misra
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.