Analysis of Evaporation Variables in Open Water and Penman Monteith Evaporation Variables Using Ridge Regression [Case Study Forest Fire Model]

Authors

  • Endar H. Nugrahani

    Department of Mathematics, IPB University, Bogor, Indonesia

  • Sri Nurdiati

    Department of Mathematics, IPB University, Bogor, Indonesia

  • Ardhasena Sopaheluwakan

    Climate and Air Quality Research Agency official Meteorological, Agency for Meteorology Climatology and Geophysics, Jakarta, Indonesia

  • Pandu Septiawan

    Engineering Mechanics and Energy, University of Tsukuba, Tsukuba, Japan

  • Willy Pratama

    Department of Mathematics, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.30564/jasr.v7i4.6916
Received: 20 July 2024 | Revised: 14 September 2024 | Accepted: 10 October 2024 | Published Online: 15 October 2024

Abstract

Forest and land fires constitute a calamity influenced by actual evapotranspiration (act) derived from ERA5-land data, evaporation from open water (pev) derived from ERA5-Land data, and Penman-Monteith evaporation (et0). This study aims to scrutinize the characteristics, spatial and temporal aspects of these three variables, and assess the efficacy of pev and et0 in modeling forest fires through Ridge Regressions. Forest fire-related data, acquired via the Empirical Orthogonal Function method based on Singular Value Decomposition, will be employed. The analysis characteristic, temporal, spatial, and ridge regression assessments, with hotspot data serving as an indicator for forest and land fires. The findings reveal that the pev variable requires the fewest computation indicators. The characteristics of the act variable closely resemble those of the et0 variable. All three variables exhibit similar spatial and temporal patterns in forest fire-related data. The performance of the pev in modeling forest fires is better than the reference evapotranspiration variable in most local region analysis. This result highlights the potential applications of pev in modeling the general characteristics of fire events, making it robust across different regions. However, for modeling extreme events, et0 proves to be superior to other analyzed variables, particularly for events not included in the training data. Thus, et0 has higher potential performance in analysing and modeling future impact of climate changes related to fires risk rise due to more frequent drought condition.

Keywords:

Evaporation; Evapotranspiration; Forest and Land Fires; Characteristics; Performance ; Modelling

References

[1] Gellert, P.K. 1998. A brief history and analysis of Indonesia’s forest fire crisis. Southeast Asia Program Publications at Cornell University. 65:63-85.

[2] Cahyono, S.A., Warsito, S.P., Andayani, W., Darwanto, D.H. 2015. Factors Influencing Forest Fires in Indonesia and Their Policy Implications (Translated: Indonesia). Jurnal Sylva Lestari. 3(1):103-112.

[3] Suharjo, B.H., Velicia, W.A. 2018. The Role of Rainfall Towards Forest and Land Fires Hotspot Reduction in Four Districs in Indonesia on 2015-2016. Jurnal Silvikultur Tropika. 09(1)

[4] William, A.P., et al. 2014. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. International Journal of Wildland Fire. 24(1):14-26. https://doi.org/10.1071/WF14023

[5] Hadiyanto, S. 2007. Pattern of drought vulnerability levels in Central Java (Translated: Indonesia) [Graduate Thesis]. Jakarta (ID): University of Indonesia

[6] Tsakiris, G., Vangelis, H. 2005. Establishing a drought index incorporating evapotranspiration. European Water. 9(10):3-11.

[7] Vembrianto, N., Yoza, D., Sribudiani, E. 2015. Ecological characteristics Location of forest and land fires in Rantau Bais Village, Tanah Putih District, Rokan Hilir Regency (Translated: Indonesia). Jom Faperta. 2(1):1-9.

[8] Marganingrum, D., Santoso, H. 2019. Evapotranspiration of Indonesian tropical area. Jurnal Presipitasi. 16(3): 106.

[9] Yu, G., Feng, Y., Wang, J., Wright, D. B. 2023. Performance of fire danger indices and their utility in predicting future wildfire danger over the conterminous United States. Earth's Future. 11(e2023EF003823). https://doi.org/10.1029/2023EF003823

[10] Quintano, C., Fernández-Manso, A., Fernández-Guisuraga, J.M., Roberts, D.A. 2024. Improving Fire Severity Analysis in Mediterranean Environments: A Comparative Study of eeMETRIC and SSEBop Landsat-Based Evapotranspiration Models. Remote Sens. 16 (361). https://doi.org/10.3390/rs16020361

[11] Ma, Q., Bales, R.C., Rungee, J., Conklin, M. H., Collins, B.M., Goulden, M.L. 2020. Wildfire controls on evapotranspiration in California’s Sierra Nevada. Journal of Hydrology. 590. https://doi.org/10.1016/j.jhydrol.2020.125364.

[12] Nolan, R.H., Lane, P.N.J., Benyon, R.G., Bradstock, R.A., Mitchell, P.J. 2019. Changes in evapotranspiration following wildfire in resprouting eucalypt forests. Ecohydrology. 7:1363-1377.

[13] Dimitriadou, S., Nikolakopoulos, K.G. 2021. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology. 8 (163). https://doi.org/10.3390/hydrology8040163

[14] Lhomme JP. 1997. Towards a rational definition of potential evaporation. Hydrol Earth Syst Sci. 1(2): 257-264.

[15] Han, S., Tian, F., Hu, H. 2014. Positive or negative correlation between actual and potential evaporation? Evaluaing using a nonlinear complementary relationship model. Water Resources Research. 50(2): 1322-1336.

[16] Ghiat, I., Mackey HR, Al-Ansari T. 2021. A review of evapotranspiration measurement models, techniques and methods for open and closed agricultural field application. Water.13(18):2523.

[17] Nurdiati, S., Sopahelukawan, A., Septiawan, P., Ardhana, M.R. 2022. Joint spatio-temporal analysis of various wildfire and drought indicators in Indonesia. Atmosphere. 13(1591). https://doi.org/10.3390/atmos13101591.

[18] Abtew W, Melesse A. 2013. Evaporation and Evapotranspiration: Measurements and Estimations. Berlin (DE): Springer.

[19] Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38. Nr. 1: 55-94.

[20] Granger RJ. 1989. An examination of the concept of potential evaporation. Journal of Hydrology. 111(1-4): 9-19. https://doi.org/10.1016/0022-1694(89)90248-5

[21] Muñoz, S. J. 2019. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac

[22] ORNL DAAC. 2018. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1379

[23] Penman, H.L. 1948. Natural Evaporation from Open Water, Bare Soil And Grass. Proc. R. Soc. London, Ser. A. 193: 120–146

[24] Monteith, J. L. 1965. Evaporation and Environment. 19th Symposium of the Society for Experimental Biology: 205-234. Cambridge Univ. Press, Cambridge

[25] Hannachi, A. 2004. A primer for EOF analysis of climate data: Department of Meteorology, University of Reading, Reading RG6 6BB, UK

[26] Navarra, A., Simoncini, V. 2010. A Guide to Empirical Orthogonal Function for Climate Data Analysis: Springer

[27] Cassisi, C., Montalto, P., Aliotta, M., Cannata, A., Pulvirenti, A. 2012. Advances in Knowledge Discovery and Data Mining. Switzerland (CH): Springer

[28] Chen, S.X. 2000. Probability density function estimation using gamma kernels. Annals of the Institute of Statistical Mathematics. 52(3): 471–480. https://doi.org/10.1023/a:1004165218295

[29] Marden, J.I. 2004. Positions and QQ plots. Statistical Science. 19(4): 606-614.

[30] Joyce, J.M. 2011. International Encyclopedia of Statistical Science. New York (US) : Springer, p720–722. https://doi.org/10.1007/978-3-642-04898-2_327

[31] Nguyen, H.V., Vreeken, J. 2015. Non-parametric Jensen-Shannon Divergence. Lecture Notes in Computer Science: 173–189. https://doi.org/10.1007/978-3-319-23525-7_11

[32] Lin, J. 1991. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37:145–151.

[33] Acito, F. 2023. Ordinary Least Squares Regression. In: Predictive Analytics with KNIME. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-45630-5_6

[34] Hilt, D. E., Seegrist, D.W. 1977. Ridge, a computer program for calculating ridge regression estimates. https://doi.org/10.5962/bhl.title.68934

[35] Hoerl, A. E., Kennard, R. W. 1970. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics. 12(1): 69–82. https://doi.org/10.1080/00401706.1970.10488635

[36] Tutz, G., Ulbricht, J. 2006. Penalized regression with correlation based penalty. Statistic and Computing. 19(3): 239-253.

[37] Paulson, D.S. 2007. Handbook of Regression and Modeling. New York (US): Chapman & Hall/CRC.

[38] El-Dereny, M. Rashwan, N.I. 2011. Solving multicollinearity problem using ridge regression models. Int. J. Comtemp. Math. Sciences. 6(12): 585-600.

[39] Kutner, M., Christhoper, Nachtsheim, J.C., Neter, J., Li, W. 2005. In Applied Linear Statistical Models, Fifth Edition. NewYork (US): McGraw-Hill.

[40] Fisher, J. B., et al. (2017), The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res. 53: 2618–2626, https://doi.org/10.1002/2016WR020175

[41] Zhang, K., Chen, H., Ma, N. et al. 2024. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci Data. 11(445). https://doi.org/10.1038/s41597-024-03271-7

[42] Elnashar, A., Wang, L., Wu, B., Zhu, W., Zeng, H. 2021. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data. 13: 447–480. https://doi.org/10.5194/essd-13-447-2021

[43] Du, J.Z., Xu, X.L., Liu, H.X., Wang, L.Y., Cui, B.S. 2023. Deriving a high-quality daily dataset of large-pan evaporation over China using a hybrid model. Water Res. 238, 120005.

[44] Liu, Y. J., Chen, J., Pan, T. 2019. Analysis of Changes in Reference Evapotranspiration, Pan Evaporation, and Actual Evapotranspiration and Their Influencing Factors in the North China Plain During 1998–2005. Earth and Space Science. 6: 1366–1377. https://doi.org/10.1029/2019EA000626

[45] Fisher, J. B., et al. 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53 :2618–2626. https://doi.org/10.1002/2016WR020175

[46] McEvoy, D. J., Pierce, D. W., Kalansky, J. F., Cayan, D. R., Abatzoglou, J. T. 2020. Projected changes in reference evapotranspiration in California and Nevada: Implications for drought and wildland fire danger. Earth's Future. 8(e2020EF001736). https://doi.org/10.1029/2020EF001736

[47] Zhao, M., A, G., Liu, Y. et al. 2022. Evapotranspiration frequently increases during droughts. Nat. Clim. Chang. 12:1024–1030. https://doi.org/10.1038/s41558-022-01505-3

[48] Van Wagner, C. E. 1987. Development and Structure of the Canadian Forest Fire Weather Index System, Technical Report 35, Canadian Forestry Service, Ottawa, ON.

[49] McArthur, A. G. 1967. Fire Behaviour in Eucalypt Forests. Department of National Development Forestry and Timber Bureau, Canberra, Leaflet 107

[50] Ketch, J.J., Byram, G.M. 1968. A drought index for forest fire control. Res. Pap. SE-38. Asheville, NC. U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 32 p.

[51] Yu, X., Qian, L., Wang, W., Huo, X.; Hu, X., Wang, Y. 2023. Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products. Water. 15(2027). https://doi.org/10.3390/w15112027

[52] Liu, B., 2004. A spatial analysis of pan evaporation trends in China, 1955–2000. J. Geophys. Res. 109. D15102. https://doi.org/10.1029/2004JD004511.

[53] Xie, R., Wang, A., 2020. Comparison of ten potential evapotranspiration models and their attribution analyses for ten chinese drainage basins. Adv. Atmos. Sci. 37: 959–974. https://doi.org/10.1007/s00376-020-2105-0.

[54] Xu, C., Wang, W., Hu, Y., Liu, Y. 2024. Evaluation of ERA5, ERA5-Land, GLDAS-2.1, and GLEAM potential evapotranspiration data over mainland China. Journal of Hydrology: Regional Studies. 51(101651). https://doi.org/10.1016/j.ejrh.2023.101651

[55] Pan, X., Chin, M., Ichoku, C. M., Field, R. D. 2018. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean dipole during 1979–2016. Journal of Geophysical Research: Atmospheres. 123: 7974–7988. https://doi.org/10.1029/2018JD028402

[56] Dafri, M., Nurdiati, S., Sopaheluwakan, A. 2021. Quantifying ENSO and IOD impact to hotspot in Indonesia based on Heterogeneous Correlation Map (HCM). Journal of Physics: Conference Series. 1869. 012150. https://doi.org/10.1088/1742-6596/1869/1/012150

[57] Zhang, Y., Politis, D.N. 2021. Ridge Regression Revisited: Debiasing, Thresholding and Bootstrap. Mathematics Statistics Theory. https://doi.org/10.48550/arXiv.2009.08071

[58] Nurdiati, S., Sopaheluwakan, A., Julianto, M.T., Septiawan, P., Rohimahastuti, F. 2021. Modelling and analysis impact of El Nino and IOD to land and forest fire using polynomial and generalized logistic function: Cases study in South Sumatra and Kalimantan, Indonesia. Model. Earth Syst. Environ. 8:3341–3356.

[59] Ardiyani, E., Nurdiati, S., Sopaheluwakan, A., Septiawan, P., Najib, M.K. 2023. Probabilistic Hotspot Prediction Model Based on Bayesian Inference Using Precipitation, Relative Dry Spells, ENSO and IOD. Atmosphere. 14 (286). https://doi.org/10.3390/atmos14020286

[60] Nurdiati, S., Bukhari, F., Sopaheluwakan, A., Septiawan, P., Hutapea, V. 2023. ENSO and IOD Impact Analysis Of Extreme Climate Condition In Papua, Indonesia. Geographia Technica. 19:1-18. https://doi.org/10.21163/GT_2024.191.01

[61] Zhang, Y., Peña-Arancibia, J., McVicar, T. et al. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep. 6(1924) https://doi.org/10.1038/srep19124

[62] Li, Z., Wang, S. Li, J. 2020. Spatial variations and long-term trends of potential evaporation in Canada. Sci Rep. 10(22089). https://doi.org/10.1038/s41598-020-78994-9

[63] Shen, J., Yang, H., Li, S., Liu, Z., Cao, Y., Yang, D. 2022. Revisiting the pan evaporation trend in China during 1988–2017. Journal of Geophysical Research: Atmospheres. 127(e2022JD036489). https://doi.org/10.1029/2022JD036489

[64] Clarke, H., Nolan, R.H., De Dios, V.R. et al. 2022. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat Commun. 13(7161). https://doi.org/10.1038/s41467-022-34966-3

[65] Jain, P., Castellanos-Acuna, D., Coogan, S.C.P. et al. 2022. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 12:63–70. https://doi.org/10.1038/s41558-021-01224-1

Downloads

How to Cite

Nugrahani, E., Nurdiati, S., Sopaheluwakan, A., Septiawan, P., & Pratama, W. (2025). Analysis of Evaporation Variables in Open Water and Penman Monteith Evaporation Variables Using Ridge Regression [Case Study Forest Fire Model]. Journal of Atmospheric Science Research, 7(4), 51–65. https://doi.org/10.30564/jasr.v7i4.6916

Issue

Article Type

Article