Introduction to Thermo-Photo-Electronics

Authors

  • Stanislav V. Ordin

    The Russian Academy of Sciences, Saint Petersburg, 119991, Russia

DOI:

https://doi.org/10.30564/jeis.v5i1.5580

Abstract

Building the foundations of Thermo-Photo-Electronics became possible only after the correction of thermodynamic errors in the traditional theory of semiconductor Electronics and Photo-Electronics. It is these errors that determined the output of the asymptotics of the operating parameters of semiconductor electronic devices, in particular, both the saturation of the limiting clock frequency of processors, and the saturation of the efficiency of both thermoelectric and photoelectric converters. But in semiconductors, although these thermodynamic errors manifested themselves not only in the instrumental, but also in the technological aspect, they could not prohibit semiconductor Electronics itself, unlike Electronics based on other materials. It’s just that a number of qualitative mistakes were made in the theory of semiconductor devices and photo devices. In this work, it is shown that the energy band diagram of semiconductor contacts itself was constructed with a significant omission—without taking into account the temperature force on the contact. At the same time, because of the incorrect calculation of currents according to the outdated formulas of Richardson-Langmuir-Deshman, there were also PROHIBITIONS. So the practitioners compensated for the errors of the theory with “empirical corrections”. So electronics engineers often made devices not according to a strict theory (which simply did not exist until now), but on a hunch and according to empirical local laws. And only the correction of the historical mistakes made it possible to expand the phenomenology of the description of processes in a Solid Body, on the basis of which it is possible to make calculations of highly efficient elements of Photo-Thermo-Electronics.

Keywords:

Phenomenology; Potential barriers; P-n-junction; Prigogine local entropy production; RichardsonLangmuir models; Local thermo-EMF

References

[1] Ordin S.V., 2018. C & BN-foundation for atomic-crystalline orbitals. Global Journal of Science Frontier Research—Physics & Space Science. 18(5), 17-47.

[2] Ordin, S., 2022. Gaps and errors of the Schrödinger Equation. Global Journal of Science Frontier Research. 22(3), 1-5.

[3] Ordin, S.V., 2021. Foundations of Planck-Einstein quantization (Thematic collection of recent studies reviewed in scientific journals). LAP Lambert Academic Publishing: London.

[4] Ordin, S., 2022. Foundations of quantization principles. Jenny Stanford Publishing Pte Ltd.: Singapore.

[5] Pickus, G.E., 1957. Контактные явления. Полупроводники в науке и технике, т.1 (Russian) [Contacts phenomena. Semiconductors in a science and engineering, v. I]. Academy of Sciences USSR: Moscow. pp. 113-132.

[6] Jan Tauc, 1962. Photo—and thermoelectric phenomena in semiconductors. (translation from Czech). Foreign Literature: Moscow.

[7] Ordin, S.V., 1997. Optimization of operating conditions of thermocouples allowing for nonlinearity of temperature distribution. Semiconductors. 31(10), 1091-1093.

[8] Onsager, L., 1931. Reciprocal relations in irreversible processes. I. Physical Review. 37(4), 405.

[9] Ordin, S.V., Zjuzin, A.J., Ivanov, Y. (editors), et al., 2010. Nano-structured materials for thermoelectric devices. The 29th International Conference on Thermoelectrics; 2010 May 30-Jun 3; Shanghai.

[10] Ordin, S.V., Wang, W.N., 2011. Thermoelectric effects on micro and nano level. Journal of Advances in Energy Research. 9, 311-342.

[11] Ordin, S.V., 2017. Refinement and supplement of phenomenology of thermoelectricity. American Journal of Modern Physics. 6(5), 96-107.

[12] Ordin, S.V., 2018. Experimental and theoretical expansion of the phenomenology of thermoelectricity. Global Journal of Science FrontierResearch-Physics & Space Science (GJSFR-A). 18(1), 1-8.

[13] Ordin, S.V., 2017. Cardinal increase in the efficiency of energy conversion based on local thermoelectric effects. International Journal of Advanced Research in Physical Science. 4(12), 5-9.

[14] Ordin, S.V., 2018. Anomalies in thermoelectricity and reality are local thermo-EMFs. Global Journal of Science Frontier Research-Physics & Space Science (GJSFR-A). 18(2), 59-64.

[15] Ordin, S.V., Zhilyaev, Y.V., Zelenin, V.V., et al., 2017. Локальные термоэлектрические эффекты в широкозонных полупроводниках(Russian) [Local thermoelectric effects in wide-gap semiconductors]. Semiconductors. 51, 883-886. DOI: https://doi.org/10.21883/FTP.2017.07.44643.29

[16] Ordin, S., 2023. Foundations of polymer thermoelectronics. Journal of Materials and Polymer Science. 3(1), 1-5.

[17] Ordin, S., 2015. Достижения и проблемы термоэлектричества, опубликовано (Russian)[Achievements and Problems of Thermoelectricity]. Available from: http://rusnor.org/pubs/articles/12707.htm

[18] Ordin, S.V. (editor), 1997. Peltier heat as a volume property and optimization of working regimes of thermoelements in real conditions. ICT’97, XVI International Conference on Thermoelectrics; 1997 Aug 26-29; Hotel Art’otel Dresden. USE: IEEE. p. 96-97. DOI: https://doi.org/10.1109/ICT.1997

[19] Ordin, S.V., 2018. Anomalies in thermoelectricity and reality are local Thermo-EMFs. Global Journal of Science Frontier Research-Physics & Space Science (GJSFR-A). 18(2), 59-64.

[20] Ordin, S., 2012. НАНО или новый образ мышления, опубликовано (Russian) [NANO or a new way of thinking]. Nanotechnological Society of Russia. Available from: http://rusnor.org/pubs/articles/7556.htm

[21] Stilbans, L.S., 1957. Термоэлектрические явления. Полупроводники в науке и технике, т.1 (Russian) [The thermoelectric phenomena. Semiconductors in a science and engineering, v. I]. Academy of Sciences USSR: Moscow. pp. 113-132.

[22] Ziman, J., 1974. Principles of the theory of solids. Cambridge University Press: Cambridge.

[23] Sze, S.M., 1981. Physics of semiconductor devices. Wiley: New York. pp. 365.

[24] Gamache, V.I., 2000. Физика полупроводниковых устройств, Второе Издание (Russian) [Physics of semiconductor devices, Second Edition]. NTL Publishing House: Moscow. pp. 426.

[25] Ordin S.V., 2014. Баллистическая модель движения электронов над потенциальным барьером, ФТИ им. А.Ф. Иоффе, Российской Академии Наук, Санкт Петербург, Россия (Russian) [Ballistic model of the movement of electrons over potential hill, PHTI of A.F. Ioffe of the Russian Academy of Sciences, St.-Petersburg, Russia]. Interstate Conference: Thermoelectrics and Their Application. p. 199-203. [cited 2014 Nov 14]. Available from: http://rusnor.org/pubs/articles/11583.htm

[26] Moyzhes, B., Pikus, G., 1973. Термоионное преобразование под редакцией Б.Я (Russian) [Thermionic converters and low-temperature plasma]. Academic of Sciences USSR: Moscow. pp. 532.

[27] Ordin, S.V., 2021. Allowed spatial transitions and cancellation of the Richardson-Langmuir ban. Non-Metallic Material Science. 3(1), 15-23.

[28] Ordin, S.V. (editor), 2002. Contact thermopowers. Proceedings of ICT’02 XXI International Conference on Thermoelectrics; 2002 Aug 25-29; Hyatt Regency Hotel, Long Beach. USA: IEEE.

[29] Ordin, S.V., Sokolov, I.A., Zjuzin, A.J. (editors), 2006. Термоэлектрические процессы в p-n переходах (Russian) [Thermoelectric processes in p-n junctions]. Works of X Interstate Seminar: Thermoelectrics and Their Application, A.F. Ioffe PhTI of the Russian Academy of Sciences; 2006 Nov 14-15; St.-Petersburg. p. 41-47.

[30] Ordin, S.V., 2020. Local (NANO) thermoelectric effects. The Journal of Modern Technology and Engineering. 5(1), 107-109.

[31] Ordin S.V. (editor), 2015. Оптиче ская методика измерения локальных термо-ЭДС, ФТИ им. А.Ф.Иоффе Российской Академии Наук, Санкт Петербург, Россия (Russian) [Optical technique of measurement local thermo-EMF, PHTI of A.F.Ioffe of the Russian Academy of Sciences, St.-Petersburg, Russia]. Interstate Conference: Thermoelectrics and Their Application. p. 234-237.

[32] Ordin, S., 2017. Refinement of basic physical models. Lambert: London. pp. 82.

[33] Ordin, S., 2022. Характеризация Состояния Материи, опубликовано (Russian) [Characterization of the state of matter]. Nanotechnological Society of Russia. Available from: http://rusnor.org/network/social/user/10216/blog/3877/

[34] Ordin, S., 2022. Степени Гармонии Природы, опубликовано (Russian) [Degrees of harmony of nature]. Nanotechnological Society of Russia. Available from: http://rusnor.org/network/social/user/10216/blog/3894/

[35] Ordin, S., 2023. Foundations of thermoelectronics. International Journal of Physics and Mathematics. 5(1), 15-19. DOI: https://doi.org/10.33545/26648636.2023.v5.i1a.46

[36] Ordin, S., 2023. Correction and extension of quantum statistics. Science Set Journal of Physics. 2(2), 1-4. Available from: https://www.mkscienceset.com/articles_file/246-_article1682576762.pdf

Downloads

How to Cite

Ordin, S. . V. (2023). Introduction to Thermo-Photo-Electronics. Journal of Electronic & Information Systems, 5(1), 51–66. https://doi.org/10.30564/jeis.v5i1.5580

Issue

Article Type

Article