Enhancing Water Quality, Growth Performance and Profitability of Outdoor Earthen Pond Shrimp Aquaculture Using Biofloc Technology

Authors

  • Benedict Terkula Iber

    1. Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia; 2. Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University, Makurdi P.M.B. 2373, Nigeria

  • Shahadat Hossain

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Mohd Nazli Mohd Nor

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Suhairi Mazelan

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Nurul Hayati Ismail

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Mohamad Jalilah

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Ahmad Shuhaimi Draman

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Wahidah Wahab

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Mohd Syafiq Mohd Razak

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Hidayah Manan

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Ahmad Ideris Abdulrahim

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Amyra Suryatie Kamruzzan

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Azmie Ghazali

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Mohd Ihwan Zakariah

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

  • Nor Azman Kasan

    Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Kuala Terengganu 21030, Malaysia

DOI:

https://doi.org/10.30564/re.v7i4.10221
Received: 27 May 2025 | Revised: 31 May 2025 | Accepted: 4 June 2025 | Published Online: 9 October 2025

Abstract

Global seafood demand has continued to rise amidst challenges to traditional aquaculture operations. Current shrimp aquaculture practice requires high water exchange and discharges toxic effluent to the environment. Biofloc technology (BFT) is self-sustaining and emphasizes nutrient cycling through microbial activity to maintain water quality. The effect of BFT on water quality and profitability of shrimp (Litopenaeus vannamei) culture was determined over a 70-day period. Ponds P1, P2, and P3 were treated with BFT and compared to a control group (P4) without BFT. Bacillus infantis cultured inoculum initiated biofloc development while molasses-maintained C:N ratio of 15:1. One-way ANOVA determined the mean differences in Temperature, pH, dissolved oxygen (DO), total dissolved solid, alkalinity, salinity, ammonia (NH3), nitrates, nitrites (NO2), calcium, magnesium, as well as shrimp body weight (BW) and total length (TL) across treatments. Profitability was determined by comparing the cost of production with sales and plotting it on a bar chart. BFT shrimp exhibited significantly higher BW (13.6 g) compared to 8.1 g in the control, and maintained a higher survival rate (80–90%) by day 70. Water quality was better managed in BFT, with NH3 consistently kept below 0.5 mg/L; transient peaks of NO2, more stable pH (averaging at 7.5), and better DO management, maintained above 5 mg/L. BFT provided higher profitability of Ringgit Malaysia (RM) 11,019.67 (P1) and RM 8651.83 (P2) compared to financial losses in the non-biofloc system. Although operational challenges were reported, BFT  showed superior resilience, suggesting that proper technical training and farm management are crucial for its optimization.

Keywords:

Bacteria; Bacillus Infantis; Carbon Source; FCR; Microbial Activity; Penaeus Vannamei; Survival

References

[1] Iber, B.T., Okomoda, V.T., Rozaimah, S.A., et al., 2021. Eco-friendly approaches to aquaculture wastewater treatment: Assessment of natural coagulants vis-a-vis chitosan. Bioresource Technology Reports. 15, 100702. DOI: https://doi.org/10.1016/j.biteb.2021.100702

[2] Che Hashim, N.F., Ghazali, N.A., Amin, N.M., et al., 2019. Characterization of Marine Bioflocculant-producing Bacteria Isolated from Biofloc of Pacific Whiteleg Shrimp, Litopenaeus vannamei Culture Ponds. IOP Conference Series: Earth and Environmental Science. 246(1), 012007. DOI: https://doi.org/10.1088/1755-1315/246/1/012007

[3] de Abreu, J.L., Brito, L.O., de Lima, P.C.M., et al., 2019. Effects of addition of Navicula sp. (diatom) in different densities to post larvae of shrimp Litopenaeus vannamei reared in a BFT system: Growth, survival, productivity and fatty acid profile. Aquaculture Research. 50(8), 2231–2239. DOI: https://doi.org/10.1111/are.14104

[4] Van Den Hende, S., Claessens, L., De Muylder, E., et al., 2016. Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquaculture Research. 47(4), 1075–1089. DOI: https://doi.org/10.1111/are.12564

[5] Raza, B., Zheng, Z., Yang, W., 2024. A Review on Biofloc System Technology, History, Types, and Future Economical Perceptions in Aquaculture. Animals. 14(10), 1489. DOI: https://doi.org/10.3390/ANI14101489

[6] Padeniya, U., Davis, D.A., Wells ,D.E., et al., 2022. Microbial interactions, growth, and health of aquatic species in biofloc systems. Water. 14(24), 4019. DOI: https://doi.org/10.3390/w14244019

[7] Kasan, N.A., Dagang, A.N., Abdullah, M.I., 2018. Application of biofloc technology (BFT) in shrimp aquaculture industry. IOP Conference Series: Earth and Environmental Science. 196(1), 012043. DOI: https://doi.org/10.1088/1755-1315/196/1/012043

[8] Kurniawan, S.B., Ahmad, A., Rahim, N.F.M., et al., 2021. Aquaculture in Malaysia: Water-related environmental challenges and opportunities for cleaner production. Environmental Technology & Innovation. 24, 101913. DOI: https://doi.org/10.1016/j.eti.2021.101913

[9] Sampantamit, T., Ho, L., Lachat, C., et al., 2020. Aquaculture production and its environmental sustainability in Thailand: Challenges and potential solutions. Sustainability. 12(5), 2010. DOI: https://doi.org/10.3390/su12052010

[10] Kumar, S., Srivastava, P.K., Kumar, V., et al., 2024. Biofloc technology: A sustainable approach towards wastewater utilization and fish production. Lakes and Reservoirs. 29(1), e12449. DOI: https://doi.org/10.1111/LRE.12449

[11] Patil, P.K., Antony, L., Avunje, S., et al., 2021. Bioaugmentation with nitrifying and denitrifying microbial consortia for mitigation of nitrogenous metabolites in shrimp ponds. Aquaculture. 541, 736819. DOI: https://doi.org/10.1016/j.aquaculture.2021.736819

[12] Zhu, L., Che, X., Liu, X., et al., 2022. Reducing Carbon Input Improved the Diversity of Bacterial Community in Large-Scale Biofloc Shrimp Culture Facilities. Diversity. 14(10), 778. DOI: https://doi.org/10.3390/D14100778

[13] Minaz, M., Kubilay, A., 2021. Operating parameters affecting biofloc technology: carbon source, carbon/nitrogen ratio, feeding regime, stocking density, salinity, aeration, and microbial community manipulation. Aquaculture International. 29(3), 1121–1140. DOI: https://doi.org/10.1007/S10499-021-00681-X

[14] Zafar, M.A., Rana, M.M., 2022. Biofloc technology: an eco-friendly ‘green approach’ to boost up aquaculture production. Aquaculture International. 30(1), 51–72. DOI: https://doi.org/10.1007/S10499-021-00781-8

[15] Fuller, P.L., Knott, D.M., Kingsley-Smith, P.R., et al., 2014. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquatic Invasions. 9(1), 59–70. DOI: https://doi.org/10.3391/ai.2014.9.1.05

[16] Pérez-Velasco, R., Hernández-Vergara, M.P., Pérez-Rostro, C.I., Frías-Quintana, C.A., 2023. Variation of dietary protein/lipid levels used in post larvae of freshwater prawn Macrobrachium rosenbergii cultured in a biofloc system. Latin American Journal of Aquatic Research. 51(1), 12–22. DOI: https://doi.org/10.3856/VOL51-ISSUE1-FULLTEXT-2924

[17] Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., et al., 2011. Effect of biofloc technology (BFT) on the early post larval stage of pink shrimp Farfantepenaeus paulensis: Growth performance, floc composition and salinity stress tolerance. Aquaculture International. 19(5), 891–901. DOI: https://doi.org/10.1007/S10499-010-9408-6

[18] Hassan, S.A.H., Sharawy, Z.Z., El Nahas, A.F., et al., 2022. Carbon sources improve water quality, microbial community, immune-related and antioxidant genes expression and survival of challenged Litopenaeus vannamei Post larvae in biofloc system. Aquaculture Research. 53(17), 5902–5914. DOI: https://doi.org/10.1111/ARE.16058

[19] Pearson, H.W., Mara, D.D., Mills, S.W., et al., 1987. Physico-Chemical Parameters Influencing Faecal Bacterial Survival in Waste Stabilization Ponds. Water Science and Technology. 19(12), 145–152. DOI: https://doi.org/10.2166/WST.1987.0139

[20] Kumar, V., Swain, H.S., Vuong, P., et al., 2023. Microbial inoculums improve growth and health of Heteropneustes fossilis via biofloc-driven aquaculture. Microbial Cell Factories. 22(1), 106. DOI: https://doi.org/10.1186/S12934-023-02107-0

[21] Samocha, T.M., Prangnell, D.I., Hanson, T.R., et al., 2020. Design and Operation of High-density, Biofloc-dominated Production Systems of Pacific White Shrimp, Penaeus Vannamei. In: Felix, S., Samocha, T., Menaga, M. (eds.). Vannamei Shrimp Farming. CRC Press: Boca Raton, Florida, USA. pp. 14–36. DOI: https://doi.org/10.1201/9781003083276-3

[22] Miao, S., Hu, J., Wan, W., et al., 2020. Biofloc technology with addition of different carbon sources altered the antibacterial and antioxidant response in Macrobrachium rosenbergii to acute stress. Aquaculture. 525, 735280. DOI: https://doi.org/10.1016/J.AQUACULTURE.2020.735280

[23] Alam, S.M.N., 2023. Advancing quality and health management practices in extensive shrimp (Penaeus monodon) farming in Bangladesh. Aquaculture International. 31(1), 1–13. DOI: https://doi.org/10.1007/S10499-022-00961-0

[24] Hasan-Nataj-Niazi, E., Agh, N., Noori, F., et al., 2022. Substitution of microalgae by bioflocs as a food source for the brine shrimp Artemia franciscana. Aquaculture Research. 53(12), 4374–4387. DOI: https://doi.org/10.1111/ARE.15936

[25] de O. Ramiro, B., Wasielesky Jr, W., Pimentel, O.A.L.F., et al., 2024. Assessment of Water Quality, Growth of Penaeus vannamei, and Partial Budget in Super-Intensive BFT and RAS: A Comparison Between Sustainable Aquaculture Systems. Sustainability. 16(24), 11005. DOI: https://doi.org/10.3390/SU162411005

[26] Ahmed Alkhamis, Y., Sultana, A., Tareq Arafat, S., et al., 2023. The Impact of Biofloc Technology on Water Quality in Aquaculture: A Systematic Meta-Analysis. Aquaculture Nutrition. 2023(1), 9915874. DOI: https://doi.org/10.1155/2023/9915874

[27] Huang, H.H., Liao, H.M., Lei, Y.J., et al., 2022. Effects of different carbon sources on growth performance of Litopenaeus vannamei and water quality in the biofloc system in low salinity. Aquaculture. 546, 737239. DOI: https://doi.org/10.1016/J.AQUACULTURE.2021.737239

[28] Said, M.M., Abo-Al-Ela, H.G., El-Barbary, Y.A., et al., 2024. Influence of stocking density on the growth, immune and physiological responses, and cultivation environment of white-leg shrimp (Litopenaeus vannamei) in biofloc systems. Scientific Reports. 14(1), 11147. DOI: https://doi.org/10.1038/s41598-024-61328-4

[29] Emerenciano, M.G.C., Miranda-Baeza, A., Martínez-Porchas, M., et al., 2021. Biofloc Technology (BFT) in Shrimp Farming: Past and Present Shaping the Future. Frontiers in Marine Science. 8, 813091. DOI: https://doi.org/10.3389/FMARS.2021.813091

[30] Khanjani, M.H., Mozanzadeh, M.T., Sharifinia, M., et al., 2023. Biofloc: A sustainable dietary supplement, nutritional value and functional properties. Aquaculture. 562, 738757. DOI: https://doi.org/10.1016/J.AQUACULTURE.2022.738757

[31] Xu, W., Huang, F., Zhao, Y., et al., 2024. Carbohydrate addition strategy affects nitrogen dynamics, budget and utilization, and its microbial mechanisms in biofloc-based Penaeus vannamei culture. Aquaculture. 589, 740907. DOI: https://doi.org/10.1016/J.AQUACULTURE.2024.740907

[32] Iber, B.T., Benjamin, I.C., Nor, M.N.M., et al., 2025. Application of Biofloc technology in shrimp aquaculture: A review on current practices, challenges, and future perspectives. Journal of Agriculture and Food Research. 19, 101675. DOI: https://doi.org/10.1016/J.JAFR.2025.101675

[33] Dong, S., Li, Y., Huang, F., et al., 2022. Enhancing effect of Platymonas addition on water quality, microbial community diversity and shrimp performance in biofloc-based tanks for Penaeus vannamei nursery. Aquaculture. 554, 738057. DOI: https://doi.org/10.1016/J.AQUACULTURE.2022.738057

[34] Borges, B.A.A., Rocha, J.L., Pinto, P.H.O., et al., 2020. Integrated culture of white shrimp Litopenaeus vannamei and mullet Mugil liza on biofloc technology: Zootechnical performance, sludge generation, and Vibrio spp. reduction. Aquaculture. 524, 735234. DOI: https://doi.org/10.1016/J.AQUACULTURE.2020.735234

[35] Jean M. Lopez, A., Llameg, M.B., Paul R. et al., 2024. Utilizing Alternative Carbon Sources for Biofloc System for Growth and Survival of Pacific Whiteleg Shrimp (Litopenaeus vannamei). In: Meena, V.S., Bana, R.S., Fagodiya, R.K., (eds.). Sustainable Agroecosystems - Principles and Practices. IntechOpen Limited: London, UK. DOI: https://doi.org/10.5772/INTECHOPEN.1005537

[36] Said, M.M., El-Barbary, Y.A., Ahmed, O.M., 2022. Assessment of Performance, Microbial Community, Bacterial Food Quality, and Gene Expression of Whiteleg Shrimp (Litopenaeus vannamei) Reared under Different Density Biofloc Systems. Aquaculture Nutrition. 2022(1), 3499061. DOI: https://doi.org/10.1155/2022/3499061

[37] Amin, M., Chetpattananondh, P., 2019. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr (VI), Zn (II) and Ni (II). Bioresource Technology. 289, 121578. DOI: https://doi.org/10.1016/J.BIORTECH.2019.121578

[38] Khanjani, M.H., Mohammadi, A., Emerenciano, M.G.C., 2024. Water quality in biofloc technology (BFT): an applied review for an evolving aquaculture. Aquaculture International. 32(7), 9321–9374. DOI: https://doi.org/10.1007/S10499-024-01618-W

[39] Cheng, X., Li, M., Leng, X., et al., 2021. Creatine improves the flesh quality of Pacific white shrimp (Litopenaeus vannamei) reared in freshwater. Food Chemistry. 354, 129498. DOI: https://doi.org/10.1016/J.FOODCHEM.2021.129498

[40] Panigrahi, A., Esakkiraj, P., Saranya, C., et al., 2022. A Biofloc-Based Aquaculture System Bio-augmented with Probiotic Bacteria Bacillus tequilensis AP BFT3 Improves Culture Environment, Production Performances, and Proteomic Changes in Penaeus vannamei. Probiotics and Antimicrobial Proteins. 14(2), 277–287. DOI: https://doi.org/10.1007/S12602-022-09926-4

[41] Liu, W., Esakkiraj, P., Saranya, C., et al., 2020. Production of bioflocculant using feather waste as nitrogen source and its use in recycling of straw ash-washing wastewater with low-density and high pH property. Chemosphere. 252, 126495. DOI: https://doi.org/10.1016/j.chemosphere.2020.126495

[42] Zhao, Z., Xu, Q., Luo, L., et al., 2021. Effect of bio-floc on water quality and the production performance of bottom and filter feeder carp fed with different protein levels in a pond polyculture system. Aquaculture. 531, 735906. DOI: https://doi.org/10.1016/J.AQUACULTURE.2020.735906

[43] Nguyen, L.M., Nguyen, T.T.H., 2019. Enhanced heavy metals biosorption using chemically modified chitosan coated microwave activated sugarcane baggage ash composite biosorbents. SN Applied Sciences. 1, 1555. DOI: https://doi.org/10.1007/s42452-019-1607-9

[44] Li, C., Li, J., Liu, G., et al., 2019. Performance and microbial community analysis of Combined Denitrification and Biofloc Technology (CDBFT) system treating nitrogen-rich aquaculture wastewater. Bioresource Technology. 288, 121582. DOI: https://doi.org/10.1016/J.BIORTECH.2019.121582

[45] Ekasari, J., Nugroho, U.A., Fatimah, N., et al., 2021. Improvement of biofloc quality and growth of Macrobrachium rosenbergii in biofloc systems by Chlorella addition. Aquaculture International. 29(5), 2305–2317. DOI: https://doi.org/10.1007/S10499-021-00750-1

[46] Ramasubburayan, R., Prakash, S., Immanuel, G., et al., 2025. The Transformative Role of Prebiotics, Probiotics, and Microbiomes in Biofloc Systems for Sustainable Aquaculture: A Comprehensive Review. Reviews in Aquaculture. 17(1), e13000. DOI: https://doi.org/10.1111/RAQ.13000

[47] Sallam, G.R., Basuini, M.F.E., Fahmy, A.F., et al., 2025. Salinity-dependent effects of integrated biofloc technology on reproductive performance, biological responses, and offspring quality in red tilapia aquaculture. Aquaculture International. 33(2), 135. DOI: https://doi.org/10.1007/S10499-024-01804-W

[48] Zhu, Z., Tan, J., Abakari, G., et al., 2025. Effects of settleable versus unsettled biofloc removal strategy on aquaculture system performance and microbial community. Aquaculture. 595, 741553. DOI: https://doi.org/10.1016/J.AQUACULTURE.2024.741553

[49] Amoako Johnson, F., Hutton, C.W., Hornby, D., et al., 2016. Is shrimp farming a successful adaptation to salinity intrusion? A geospatial associative analysis of poverty in the populous Ganges–Brahmaputra–Meghna Delta of Bangladesh. Sustainability Science. 11(3), 423–439. DOI: https://doi.org/10.1007/s11625-016-0356-6

[50] Badraeni, Azis, H.Y., Tresnati, J., Tuwo, A., 2020. Seaweed Gracilaria changii as a bioremediator agent for ammonia, nitrite and nitrate in controlled tanks of Whiteleg Shrimp Litopenaeus vannamei. IOP Conference Series: Earth and Environmental Science. 564(1), 012059. DOI: https://doi.org/10.1088/1755-1315/564/1/012059

[51] Martínez-Montaño, E., Rodríguez-Montes de Oca, G.A., Román-Reyes, J.C., et al., 2020. Diatomaceous earth application to improve shrimp aquaculture: growth performance and proximate composition of Penaeus vannamei juveniles reared in biofloc at two salinities. Latin American Journal of Aquatic Research. 48(2), 197–206. DOI: https://doi.org/10.3856/VOL48-ISSUE2-FULLTEXT-2386

[52] Schveitzer, R., Baccarat, R.F.C., Gaona, C.A.P., et al., 2024. Concentration of suspended solids in super intensive culture of the Pacific white shrimp Litopenaeus vannamei with biofloc technology (BFT): A review. Reviews in Aquaculture. 16(2), 785–795. DOI: https://doi.org/10.1111/RAQ.12867

[53] Luo, G.z., Avnimelech, Y., Pan, Y.f., et al., 2013. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering. 52, 73–79. DOI: https://doi.org/10.1016/J.AQUAENG.2012.09.003

[54] Kaya, D., Genc, E., Genc, M.A., et al., 2020. Biofloc technology in recirculating aquaculture system as a culture model for green tiger shrimp, Penaeus semisulcatus: Effects of different feeding rates and stocking densities. Aquaculture. 528, 735526. DOI: https://doi.org/10.1016/J.AQUACULTURE.2020.735526

[55] Chakrapani, S., Panigrahi, A., Sundaresan, J., et al., 2021. Utilization of Complex Carbon Sources on Biofloc System and Its Influence on the Microbial Composition, Growth, Digestive Enzyme Activity of Pacific White Shrimp, Penaeus vannamei Culture. Turkish Journal of Fisheries and Aquatic Sciences. 22(4), 18813. DOI: https://doi.org/10.4194/TRJFAS18813

[56] Krummenauer, D., da Silva, A.F., Xavier, M., et al., 2024. Comparative Analysis of the Culture of Pink Shrimp Farfantepenaeus brasiliensis and Pacific White Shrimp Litopenaeus vannamei in Biofloc System. Aquaculture Journal. 4(1), 1–14. DOI: https://doi.org/10.3390/AQUACJ4010001

[57] Azim, M.E., Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 283(1–4), 29–35. DOI: https://doi.org/10.1016/J.AQUACULTURE.2008.06.036

[58] Rodrigues, M.S., Bolívar, N., Legarda, E.C., et al., 2018. Mannoprotein dietary supplementation for Pacific white shrimp raised in biofloc systems. Aquaculture. 488, 90–95. DOI: https://doi.org/10.1016/J.AQUACULTURE.2018.01.025

[59] Ray, A.J., Lotz, J.M., 2014. Comparing a chemoautotrophic-based biofloc system and three heterotrophic-based systems receiving different carbohydrate sources. Aquacultural Engineering. 63, 54–61. DOI: https://doi.org/10.1016/J.AQUAENG.2014.10.001

[60] Kumar, A., Kumar, A., Kumar, P., et al., 2018. Effect of individual and interactive alkalinity and salinity on physiological, biochemical and nutritional traits of Marvel grass. Indian Journal of Experimental Biology. 56(8), 573–581.

[61] Nguyen, M.T., Pham, N.T., Vo, L.T., et al., 2023. Integrated mariculture of co-cultured whiteleg shrimp (Litopenaeus vannamei) and grey mullet (Mugil cephalus) in sequence with red tilapia (Oreochromis spp.) in a closed biofloc-based system. Aquaculture. 566, 739200. DOI: https://doi.org/10.1016/J.AQUACULTURE.2022.739200

[62] Maciel, J.C., Francisco, C.J., Miranda-Filho, K.C., 2018. Compensatory growth and feed restriction in marine shrimp production, with emphasis on biofloc technology. Aquaculture International. 26(1), 203–212. DOI: https://doi.org/10.1007/S10499-017-0209-Z

[63] Avnimelech, Y., 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture. 264(1–4), 140–147. DOI: https://doi.org/10.1016/J.AQUACULTURE.2006.11.025

[64] Megahed, M.E., 2010. The Effect of Microbial Biofloc on Water Quality, Survival and Growth of the Green Tiger Shrimp (Penaeus Semisulcatus) Fed with Different crude Protein Levels I: Sustainable Solution to the Dependency on Fish Oil, Fishmeal and Environmental Problems. Journal of the Arabian Aquaculture Society. 5(2), 119–142.

[65] Kuhn, D.D., Lawrence, A.L., Crockett, J., 2017. Dietary toxicity of manganese to shrimp and its accumulation in bioflocs. Aquaculture Nutrition. 23(5), 1121–1127. DOI: https://doi.org/10.1111/ANU.12480

[66] Sharma, M., Ravi, O.P.K., Kumari, S., et al., 2023. Biofloc Technology - Aquaculture A Way Towards Sustainable. Journal of Aquaculture. 30, 32–37. DOI: https://doi.org/10.61885/JOA.V30.2022.264

[67] Akange, E.T., Aende, A.A., Rastegari, H., et al., 2024. Swinging between the beneficial and harmful microbial community in biofloc technology: A paradox. Heliyon. 10(3), e25228. DOI: https://doi.org/10.1016/J.HELIYON.2024.E25228

[68] El-Sayed, A.F.M., 2021. Use of biofloc technology in shrimp aquaculture: a comprehensive review, with emphasis on the last decade. Reviews in Aquaculture. 13(1), 676–705. DOI: https://doi.org/10.1111/raq.12494

[69] Xuan, B.B., Sandorf, E.D., Ngoc, Q.T.K., 2021. Stakeholder perceptions towards sustainable shrimp aquaculture in Vietnam. Journal of Environmental Management. 290, 112585. DOI: https://doi.org/10.1016/j.jenvman.2021.112585

[70] Wirth, F.F., 2014. Consumers’ Shrimp Purchasing Preferences: An Application of Conjoint Analysis. Journal of Food Products Marketing. 20(2), 182–195. DOI: https://doi.org/10.1080/10454446.2012.735630

Downloads

How to Cite

Iber, B. T., Hossain, S., Mohd Nor, M. N., Mazelan, S., Ismail, N. H., Mohamad Jalilah, Draman, A. S., Wahab, W., Mohd Razak, M. S., Hidayah Manan, Abdulrahim, A. I., Kamruzzan, A. S., Azmie Ghazali, Mohd Ihwan Zakariah, & Kasan, N. A. (2025). Enhancing Water Quality, Growth Performance and Profitability of Outdoor Earthen Pond Shrimp Aquaculture Using Biofloc Technology. Research in Ecology, 7(4), 214–232. https://doi.org/10.30564/re.v7i4.10221