Effects of Forest Restoration Techniques on Community Diversity and Aboveground Biomass on Area Affected by Mining Tailings in Mariana, Southeastern Brazil
DOI:
https://doi.org/10.30564/re.v2i4.2608Abstract
Currently there is an urgent and special attention in actions to restore tropical forests. In this study, we evaluated the effect of different restoration methods on aboveground biomass (AGB) stock, tree community diversity and structure, in areas affected by the Fundão tailings dam collapse in Mariana, Minas Gerais state, Brazil. We measured and compiled data of the AGB, community diversity and structure attributes in 36 plots distributed in six restoration treatments and six replicas: planting of native tree seedlings with fertilization and pH correction (PSf) and without fertilization and pH correction (PS); seeding of native trees with fertilization and pH correction (SDf) and without fertilization and pH correction (SD); natural regeneration with fertilization and pH correction (NRf) and without fertilization and pH correction (NR). No significant differences in substrate properties and AGB between treatments. Although biomass storage between treatments was not statistically different, there is a clear pattern showing higher values active restoration method. The Pielou index ranged from 0.520 (SDf) to 0.943 (NR), except for SDf all the others treatments had values higher than 0.76. This result suggests floristic heterogeneity, without ecological dominance in the plant community. Overall, active restoration had important implications for the forest restoration where natural regeneration is limited.
Keywords:
Planting of seedlings; Direct seeding; Natural regeneration; Forest restoration; Fundão damReferences
[1] Martins SV, Villa PM, Balestrin D, Nabeta FH, Silva LF. Monitoring the passive and active ecological restoration of areas impacted by the Fundão tailings dam disruption in Mariana, Minas Gerais, Brazil. In: de Vlieger K. (Ed.), Recent Advances in Ecological Restoratio., New York, Nova Science Publishers, 2020: 51-95.
[2] Holl KD, Aide TM. When and where to actively restore ecosystems? Forest Ecology and Management, 2011, 261: 1558-1563. DOI: https://doi.org/10.1016/j.foreco.2010.07.004
[3] Holl KD. Research directions in tropical forest restoration. Annals of the Missouri Botanical Garden, 2017, 102: 237-250. DOI: https://doi.org/10.3417/2016036
[4] Holl KD. Tropical forest restoration. In: Van Andel J, Aronson J (eds) Restoration Ecology. Blackwell Publishing, Malden, MA, USA, 2012: 103-114.
[5] Martins SV. Alternative Forest Restoration Techniques. In: VIANA H. (Ed), New Perspectives in Forest Science. London, InTech. 2018: 131-148.
[6] Benayas JMR, Bullock JM, Newton AC. Creating woodland islets to reconcile ecological restoration, conservation, and agricultural land use. Frontiers in Ecology and the Environment, 2008, 6: 329-336. DOI: https://doi.org/10.1890/070057
[7] Chazdon RL, Guariguata MR. Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 2008, 48: 716-730. DOI: https://doi.org/10.1111/btp.12381
[8] César RG, Moreno VS, Coletta GD, Chazdon RL, Ferraz SFB, de Almeida DRA, Brancalion PHS. Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. Ecological Applications, 2018, 28: 373-384. DOI: https://doi.org/10.1002/eap.1653
[9] Löf M, Ersson BT, Hjältén J, Nordfjell T, Oliet JA, Willoughby I. Site preparation techniques for forest restoration. In: Stanturf JA (ed) Restoration of Boreal and Temperate Forests, secod ed. CRC Press. 2016: 85-102.
[10] Stuble KL, Fick SE, Young TP. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. Journal of Applied Ecology, 2017, 54: 1051-1057. DOI: https://doi.org/10.1111/1365-2664.12861
[11] Pitz C, Mahy G, Harzé M, Uyttenbroeck R, Monty A. Comparison of mining spoils to determine the best substrate for rehabilitating limestone quarries by favoring native grassland species over invasive plants. Ecological engineering 2018, 127: 510-518. DOI: https://doi.org/10.1016/j.ecoleng.2018.10.004
[12] Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B 2007, 362: 273- 289. DOI: https://doi.org/10.1098/rstb.2006.1990
[13] Mesquita RCG, Ickles K, Ganade G, Williamson B. Alternative successional pathways in the Amazon Basin. Jounal of Ecology, 2001, 89: 528-537. DOI: http://dx.doi.org/10.1046/j.1365-2745.2001.00583.x
[14] Jager MM, Richardson SJ, Bellingham PJ, Clearwater MJ, Laughlin DC. Soil fertility induces coordinated responses of multiple independent functional traits. Jounal of Ecology, 2015, 103: 374-385. DOI: https://doi.org/10.1111/1365-2745.12366
[15] Zuo X, Wang S, Lv P, Zhou X, Zhao X, Zhang T, Zhang J. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland. Ecology Evolution, 2016, 6: 318-328. DOI: https://doi.org/10.1002/ece3.1875
[16] Laughlin DC. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 2014, 17: 771-784. DOI: https://doi.org/10.1111/ele.12288
[17] EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análises de solo. 2. ed. Rio de Janeiro: Ministério da Agricultura e do Abastecimento, 1997: 212.
[18] Carmo FF, Kamino LHY, Junior RT, Campos IC, Carmo FF, Silvino G, Pinto CEF. Fundão Tailings Dam Failures: The Environment Tragedy of the Largest Technological Disaster of Brazilian Mining in Global Context. Perspectives in Ecology and Conservation, 2017, 15: 145-51. DOI: https://doi.org/10.1016/j.pecon.2017.06.002
[19] APG - Angiosperm Phylogeny Group IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 2016, 181: 1-20. DOI: https://doi.org/10.1111/boj.12385
[20] Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 2014, 20: 3177-3190. DOI: https://doi.org/10.1111/gcb.12629
[21] Rodrigues AC, Villa PM, Ali A, Ferreira-Junior W, Viana NA. Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. Journal of Forest Research, 2019, 1-13. DOI: https://doi.org/10.1007/s11676-019-00994-x
[22] R-Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. [accessed 06 november 2019].
[23] Crawley MJ. The R book, 2nd edn. Wiley, London, 2012: 912.
[24] Dinno A. “dunn.test” package: Dunn’s Test of Multiple Comparisons Using Rank Sums. http://CRAN.R-project.org/package=dunn.test (RStudio package version 1. 0.14., 2017)
[25] Alvarez VVH, Novaes RF, Barros NF, Cantarutti RB, Lopes AS. Interpretação dos resultados das análises de solos. In: Ribeiro AC, Guimaraes PTG, Alvarez VH (eds). Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5º Aproximação. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais, 1999: 25-32.
[26] Lehmann J, Schroth G. Nutrient leaching. In: Schroth G, Sinclair EL (eds) Trees, crops, and soil fertility: concepts and research methods. Wallingford, UK: CAB International, 2003: 151- 166.
[27] Fink JR, Inda AV, Tiecher T, Barrón V. Iron oxides and organic matter on soil phosphorus availability. Ciência e Agrotecnologia, 2016, 40: 369-379. https://doi.org/10.1590/1413-70542016404023016
[28] Gioria M, Pyšek P, Moravcová L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia, 2012, 84: 327-350.
[29] Gioria M, Pyšek P. The Legacy of Plant Invasions: Changes in the Soil Seed Bank of Invaded Plant Communities. BioScience, 2015, 66: 40-53. https://doi.org/10.1093/biosci/biv165
[30] Pilocelli A. Bioindicadores para monitoramento da restauração de áreas impactadas pelo rompimento da barragem de fundão, Mariana, Minas Gerais. Dissertation, Federal University of Viçosa, Brazil, 2020.
[31] Wheeler CE, Omeja PA, Chapman CA, Glipin M, Tumwesigye C, Lewis SL. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. Forest Ecology and Management, 2016, 373: 44-55. https://doi.org/10.1016/j.foreco.2016.04.025
[32] Ferez APC, Campoe OC, Mendes JCT, Stape JL. Silvicultural opportunities for increasing forests in Brazil. Forest Ecology and Management, 2015, 350: 40-45. https://doi.org/10.1016/j.foreco.2015.04.015
[33] Elgar AT, Freebody K, Pohlman CL, Shoo LP, Catterall CP. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Frontiers in Plant Science, 2014, 5: 200. https://doi.org/10.3389/fpls.2014.00200
[34] Powers JS, Marín-Spiotta E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 497-519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
[35] Estrada-Villegas S, Bailón M, Hall JS, Schnitzer SA, Turner BL, Caughlin T, van Breugel M. Edaphic factors and initial conditions influence successional trajectories of early regenerating tropical dry forests. Journal of Ecology, 2019, 108: 160-174. https://doi.org/10.1111/1365-2745.13263
[36] van Breugel M, Craven D, Lai HR, Baillon M, Turner BL, Hall JS. Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. Journal of Ecology, 2019, 107: 566-581. https://doi.org/10.1111/1365-2745.13126
[37] Ceccon E, Huante P, Campo J. Effects of nitrogen and phosphorus fertilization on the survival and recruitment of seedlings of dominant tree species in two abandoned tropical dry forests in Yucatán, Mexico. Forest Ecology and Management, 2003, 182: 387-402. https://doi.org/10.1016/S0378-1127(03)00085-9
[38] Davidson EA, Carvalho CJR, Vieira ICG, Figueiredo RO, Moutinho P, Ishida FI. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications, 2004, 14: 150-163. https://doi.org/10.1890/01-6006
[39] Siddique I, Vieira ICG, Schmidt S, Lamb D, Carvalho CJR, Figueiredo RDO et al. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology, 2010, 91: 2121-2131. https://doi.org/10.1890/09-0636.1
[40] Freitas MG, Rodrigues SB, Campos-Filho EM, Carmo GHP, Veiga JM, Junqueira RG P, Vieira DLM. Evaluating the success of direct seeding for tropical forest restoration over ten years. Forest Ecology and Management, 2019, 438: 224-232. https://doi.org/10.1016/j.foreco.2019.02.024
[41] Donato DC, Campbell JL, Franklin JF. Multiple successional pathways and precocity in forest development: Can some forests be born complex? Journal of Vegetation Science, 2012, 23: 576-584. https://doi.org/10.1111/j.1654-1103.2011.01362.x
[42] Williams L, Paquette A, Cavender-Bares J, Messier C, Reich PB. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology Evolution, 2017, 1(4). https://doi.org/10.1038/s41559-016-0063
[43] Lu H, Condés S, del Río M, Goudiaby V, den Ouden J, Mohren GM, Schelhaas M-J, de Waal R, Sterck FJ. Species and soil effects on over yielding of tree species mixtures in the Netherlands. Forest Ecology and Management, 2018, 409: 105-118. https://doi.org/10.1016/j.foreco.2017.11.010
[44] Martínez-Ramos M, Pingarroni A, Rodríguez-Velázquez J, Toledo-Chelala L, Zermeño-Hernández I, Bongers F. Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica, 2016, 48: 745-757. https://doi.org/10.1111/btp.12382
[45] Lorenzi H. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. 3.ed. Nova Odessa, Instituto Plantarum, 2000: 640.
[46] Rodrigues IMC, Souza Filho APS, Ferreira FA, Demuner AJ. Prospecção química de compostos produzidos por Senna alata com atividade alelopática. Planta Daninha, 2010, 28: 1-12. https://doi.org/10.1590/s0100-83582010000100001
[47] Colmanetti MAA, Barbosa LM, Shirasuna RT, Couto HTZ. Phytosociology and structural characterization of woody regeneration from a reforestation with native species in southeastern Brazil. Revista Árvore, 2016, 40: 209-218. https://doi.org/10.1590/0100-67622016000200003
[48] Miranda-Neto A, Martins SV, Silva KA, Lopes AT, Demolinari RA. Natural regeneration in a restored bauxite mine in southeast Brazil. Bosque, 2014, 35: 377-389. https://doi.org/10.4067/S0717-92002014000300012
[49] Lopes BM, Martins SV, Lopes AT, Silva KA. Fitossociologia e estrutura de floresta em restauração, em área minerada, São Sebastião da Vargem Alegre, MG. MG Biota, 2018, 10: 46-60.
[50] Balestrin D, Martins SV, Schoorl JM., Lopes AT, Andrade CF. Phytosociological study to define restoration measures in a mined area in Minas Gerais, Brazil. Ecological Engineering, 2019, 135: 8-16. https://doi.org/10.1016/j.ecoleng.2019.04.023
[51] Silva KA, Martins SV, Lopes AT, Miranda Neto A, Balestrin D. A regeneração natural como indicador da restauração ecológica de uma área minerada de bauxita. MG Biota, 2018, 10: 4-17.
[52] Felfili JM, Rezende RP. Conceitos e métodos em fitossociologia. Comunicações Técnicas Florestais. Universidade de Brasília, Departamento de Engenharia Florestal, Brasília, 2003, 5.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2020 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.