
Geometric Morphometric Analysis of Body Shape Variation in Glossogobius giuris from Lake Mainit, Agusan del Norte, Philippines
DOI:
https://doi.org/10.30564/re.v7i2.9519Abstract
Most fish exhibit remarkable morphological diversity, which is often influenced by genetic variation and ecological pressures. Consequently, these are the outcomes of organisms' responses to their environment. Meanwhile, modern morphometrics can quantify shape variation within species of the same group. This study aims to determine the body shape variation of Glossogobius giuris from Lake Mainit, Agusan Del Norte, Philippines. 60 adult, uniform-sized fish samples were collected and subjected to standardized laboratory procedures. Further, the samples were digitized for 16 homologous landmark points and loaded into Symmetry Asymmetry Geometric Data (SAGE) Software. Across the tested factors—individuals, sides, and individual x sides—result shows that shape variations among individuals were highly significant (F = 2.1045, p < 0.0001), along with among males (F = 3.2711, p < 0.0001). Females exhibited higher Fluctuating Asymmetry (FA) (F = 18.99, p < 0.0001) compared to males (F = 7.0964, p < 0.0001). It suggests morphological shape differences across the sexes, and the shape variation observed could be a response to environmental perturbations. Shape variations were associated with swimming, food hunting, and predator defense. Moreover, Principal Component Analysis (PCA) demonstrates higher scores of FA in females (81.96%) than in males (74.76%). It was noticed that females had a high fluctuating asymmetry. It might be due to various physiological and ecological pressures compared to males. The observed levels of directional and fluctuating asymmetry in males and females, respectively, may indicate sex-linked morphological and developmental processes, which are important to consider in ecological or evolutionary contexts. Thus, utilizing geometric morphometrics can depict subtle differences across the same populations.
Keywords:
Caraga Region; Ecology; Freshwater Fish; Landmarks; Limnology; Phenotypes; Shape VariationReferences
[1] Kottelat, M., 2013. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bulletin of Zoology. Supplement No. 27, 1–663.
[2] Froese, R., Pauly, D. (eds.), 2023. FishBase. Available from: https://www.fishbase.se (cited 17 April 2025).
[3] Allen, G.R., 1991. Field guide to the freshwater fishes of New Guinea. Christensen Research Institute: Madang, Papua New Guinea.
[4] Guerrero-Jiménez, G., Ramos-Rodríguez, E., Silva-Briano, M., et al., 2020. Analysis of the morphological structure of diapausing propagules as a potential tool for the identification of rotifer and cladoceran species. Hydrobiologia. 847, 243–266. DOI: https://doi.org/10.1007/s10750-019-04085-0
[5] Marchetti, P., Mottola, A., Piredda, R., et al., 2020. Determining the Authenticity of Shark Meat Products by DNA Sequencing. Foods. 9(9), 1194. DOI: https://doi.org/10.3390/foods9091194
[6] Loy, A., Mariani, L., Bertelletti, M., et al., 1998. Visualizing allometry: Geometric morphometrics in the study of shape changes in the early stages of the two-banded sea bream, Diplodus vulgaris (Perciformes, Sparidae). Journal of Morphology. 237(2), 137–146. DOI: https://doi.org/10.1002/(SICI)1097-4687(199808)237:2<137::AID-JMOR5>3.0.CO;2-Z
[7] Albertson, R.C., Kocher, T.D., 2006. Genetic and developmental basis of cichlid trophic diversity. Heredity. 97(3), 211–221. DOI: https://doi.org/10.1038/sj.hdy.6800864
[8] Cabuga, C.C., Pondang, J.M.D., Cornites, A.J.R., et al., 2024. Phenotypes variability in Glossogobius giuris population using Geometric Morphometric Analysis with notes of physico-chemical parameters from Lake Mainit, Caraga Region, Philippines. Computational Ecology and Software. 14(1), 14.
[9] Karakulak, F.S., Oray, I.K., Addis, P., et al., 2016. Morphometric differentiation between two juvenile tuna species [Thunnus thynnus (Linnaeus, 1758) and Euthynnus alletteratus (Rafinesque, 1810)] from the Eastern Mediterranean Sea. Journal of Applied Ichthyology. 32(3), 516–522. DOI: https://doi.org/10.1111/jai.13090
[10] Cadrin, S.X., 2000. Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries. 10(1), 91–112. DOI: https://doi.org/10.1023/A:1008939104413
[11] Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press: Oxford, UK.
[12] Verma, J., Kashyap, A., Serajuddin, M., 2014. Phylogeny Based on Truss Analysis in Five Populations of Freshwater Catfish: Clupisoma garua. International Journal of Science Research. 3(8), 1414–1418.
[13] Culumber, Z.W., Tobler, M., 2016. Ecological divergence and conservatism: spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus). BMC Evolutionary Biology. 16, 44. DOI: https://doi.org/10.1186/s12862-016-0593-4
[14] Polly, P.D., Lawing, A.M., Fabre, A., et al., 2013. Phylogenetic Principal Components Analysis and Geometric Morphometrics. Hystrix, the Italian Journal of Mammalogy. 24(1), 33–41. DOI: https://doi.org/10.4404/hystrix-24.1-6383
[15] Sangster, G., Luksenburg, J.A., 2015. Declining rates of species described per taxonomist: slowdown of progress or a side effect of improved quality in taxonomy? Systematic Biology. 64(1), 144–151. DOI: https://doi.org/10.1093/sysbio/syu069
[16] Kiliçli, İ.B., Batur, B., Yunus, H.A., et al., 2025. Geometric morphometric analysis of body shape and sexual dimorphism in Colossoma macropomum. Annals of Anatomy-Anatomischer Anzeiger. 260, 152659. DOI: http://dx.doi.org/10.1016/j.aanat.2025.152659
[17] Claverie, T., Wainwright, P.C., Laudet, V., 2014. A Morpho-Space for reef fishes: Elongation is the Dominant Axis of Body Shape Evolution. PLoS ONE. 9(11), e112732. DOI: https://doi.org/10.1371/journal.pone.0112732
[18] Rohlf, F.J., Marcus, L.F., 1993. A revolution in morphometrics. Trends in Ecology & Evolution. 8(4), 129–132. DOI: https://doi.org/10.1016/0169-5347(93)90024-J
[19] Zelditch, M.L., Swiderski, D.L., Sheets, H.D., 2012. Geometric Morphometrics for Biologists: A Primer, 2nd ed. Academic Press: San Diego, CA, USA.
[20] Adams, D.C., Rohlf, F.J., Slice, D.E., 2004. Geometric morphometrics: Ten years of progress following the “revolution." Italian Journal of Zoology. 71(1), 5–16. DOI: https://doi.org/10.1080/11250000409356545
[21] Slice, D.E., 2007. Geometric Morphometrics. Annual Review of Anthropology. 36, 261–281. DOI: https://doi.org/10.1146/annurev.anthro.34.081804.120613
[22] Cadrin, S.X., Friedland, K.D., 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fisheries Research. 43(1-3), 129–139. DOI: https://doi.org/10.1016/S0165-7836(99)00070-3
[23] Klingenberg, C.P., 2015. Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry. 7(2), 843–934. DOI: https://doi.org/10.3390/sym7020843
[24] Kelly, M., Barão, K.R., Jacobina, U.P., 2025. Geometric morphometrics in fish studies: trends and scientific impacts—a scientometric and systematic mapping. Zoomorphology. 144, 21. DOI: https://doi.org/10.1007/s00435-025-00710-w
[25] Imtiaz, A., Naim, D.M., 2018. Geometric morphometrics species discrimination within the genus Nemipterus from Malaysia and its surrounding seas. Biodiversitas. 19(6), 2316–2322. DOI: https://doi.org/10.13057/biodiv/d190640
[26] Rohlf, F.J., Slice, D., 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology. 39(1), 40–59. DOI: https://doi.org/10.2307/2992207
[27] Klingenberg, C.P., 2016. Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution. 226(3), 113–137. DOI: https://doi.org/10.1007/s00427-016-0539-2
[28] Monteiro, L.R., Nogueira, M.R., 2010. Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution. 64(3), 724–744. DOI: https://doi.org/10.1111/j.1558-5646.2009.00857.x
[29] Cabuga, C., Milloria, M., Lanes, J., et al., 2019. Intraspecific evaluation in the morphology of Glossogobius giuris using geometric morphometric analysis from Lake Mainit, Agusan del Norte, Philippines. International Journal of Biosciences. 14(1), 379–387. DOI: https://doi.org/10.12692/ijb/14.1.379-387
[30] Ratunil, V.B., Libay, C.P., Borja, E.A., et al., 2019. Analysis of body shape variation in Glossogobius giuris (Hamilton 1882) sampled from Lake Mainit, Philippines, using geometric morphometrics. International Journal of Fisheries and Aquatic Studies. 7(2), 287–294.
[31] Joseph, C.C.D., Jumawan, H., Hernando, B.J., et al., 2016. Fluctuating asymmetry in evaluating the developmental instability of Glossogobius giuris (Hamilton, 1822) from Lake Mainit, Surigao del Norte, Philippines. Computational Ecology and Software. 6(2), 55.
[32] Rohlf, F.J., 2004. TpsDig Version 1.4. Department of Ecology and Evolution, State University of New York: Stony Brook, NY, USA.
[33] Paña, B.H.C., Lasutan, L.G.C., Sabid, J.M., et al., 2015. Using Geometric Morphometrics to study the population structure of the silver perch, Leiopotherapon plumbeus from Lake Sebu, South Cotabato, Philippines. AACL Bioflux. 8(3), 352–361.
[34] Natividad, E.M.C., Dalundong, A.R.O., Ecot, J., et al., 2015. Fluctuating Asymmetry in the body shapes of Gobies Glossogobius celebius (Valenciennes, 1837) from Lake Sebu, South Cotabato, Philippines. AACL Bioflux. 8(3), 323–331.
[35] Marquez, E., 2007. Sage: Symmetry and Asymmetry in Geometric Data Version 1.05. Available from: http://www.personal.umich.edu/~emarquez/morph/ (cited 17 April 2025).
[36] Klingenberg, C.P., Barluenga, M., Meyer, A., 2002. Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution. 56(10), 1909–1920. DOI: https://doi.org/10.1111/j.0014-3820.2002.tb00117.x
[37] Palmer, A.R., Strobeck, C., 2003. Fluctuating asymmetry analyses revisited. In: Polak, M. (Ed.), Developmental instability: Causes and consequences. Oxford University Press: Oxford, UK. pp. 279–319.
[38] Libay, C.P., Ratunil, V.B., Ebarsabal, G.A., et al., 2019. Geometric Morphometric Analysis in Determining Phenotypic Variability of Bugwan (Hypseleotris agilis, Herre) in Lake Mainit, Philippines. International Journal of Biosciences. 14(6), 61–70.
[39] Requiron, E.A., Torres, M.A.J., Demayo, C.G., 2012. Applications of relative warp analysis in describing of scale morphology between sexes of the snakehead fish Channa striata. International Journal of Biological, Ecological and Environmental Science. 1(6), 205–209.
[40] Jumawan, J.H., Requieron, E.A., Torres, M.A., et al., 2016. Investigating the fluctuating asymmetry in the metric characteristics of tilapia Oreochromis niloticus sampled from Cabadbaran River, Cabadbaran City, Agusan del Norte, Philippines. Aquaculture, Aquarium, Conservation & Legislation. 9(1), 113–121.
[41] Langerhans, R.B., Layman, C.A., Langerhans, A.K., et al., 2007. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society. 92(4), 593–613. DOI: https://doi.org/10.1111/j.1095-8312.2007.00939.x
[42] Olson, E.C., Miller, R.L., 1958. Morphological integration. University of Chicago Press: Chicago, IL, USA.
[43] Shukla, R., Bhat, A., 2017. Morphological divergences and ecological correlates among wild populations of zebrafish (Danio rerio). Environmental Biology of Fishes. 100, 251–264. DOI: https://doi.org/10.1007/s10641-017-0576-3
[44] Leysen, H., Roos, G., Adriaens, D., 2011. Morphological Variation in Head Shape of Pipefishes and Seahorses in Relation to Snout Length and Developmental Growth. Journal of Morphology. 272, 1259–1270. DOI: https://doi.org/10.1002/jmor.10982
[45] Cabuga, C.C., Delabahan, I.C.B., Dedel, J.I.C., et al., 2018. Geometric morphometrics of leaf blade shape in water hyacinth (Eichhornia crassipes: Pontederiaceae) population from Lake Mainit, Philippines. Computational Ecology and Software. 8(2), 46–56.
[46] Echem, R.T., 2016. Geometric morphometric analysis of shape variation of Sardinella lemuru. International Journal of Advanced Research in Biological Sciences. 3(9), 91–97.
[47] Kakioka, R., Kokita, T., Kumada, H., et al., 2013. A RAD-based linkage map and comparative genomics in the gudgeons (Genus Gnathopogon, Cyprinidae). BMC Genomics. 14, 32. DOI: https://doi.org/10.1186/1471-2164-14-32
[48] Sajina, A.M., Chakraborty, S.K., Jaiswar, A.K., et al., 2011. Stock structure analysis of Megalaspis cordyla (Linnaeus, 1758) along the Indian coast based on truss network analysis. Fisheries Research. 108(1), 100–105. DOI: https://doi.org/10.1016/j.fishres.2010.12.006
[49] Bilici, S., Cicek, T., Baysal, A., et al., 2015. Morphological differences among the Cyprinion macrostomus (Cyprinidae) populations in the Tigris River. Journal of Survey in Fisheries Sciences. 2(1), 57–67.
[50] Mustikasari, D., Suryaningsih, S., Nuryanto, A., 2020. Morphological Variation of Blue Panchax (Aplocheilus panchax) Lives in Different Habitat Assessed Using Truss Morphometric. Journal of Biological Education. 12(3), 399–407.
[51] Martinez-Leiva, L., Landeira, J.M., Fatira, E., et al., 2023. Energetic implications of Morphological changes between Fish Larval and Juvenile Stages using Geometric Morphometrics of Body Shape. Animals. 13(3), 370. DOI: https://doi.org/10.3390/ani13030370
[52] Jearranaiprepame, P., 2017. Morphological differentiation among isolated populations of dwarf snakehead fish, Channa gachua (Hamilton, 1822) using truss network analysis. Acta Biologica Szegediensis. 61, 119–128.
[53] Raffini, F., Schneider, R.F., Franchini, P., et al., 2020. Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally‐adapted sympatric cichlid fishes. Molecular Ecology. 29(7), 1219–1234. DOI: https://doi.org/10.1111/mec.15304
[54] Sawalman, R., Madduppa, H., 2020. The Analysis of Morphological and Genetic Characteristics of Yellow stripe Scad from Muara Baru Modern Fish Market in North Jakarta [in Indonesian]. Jurnal Ilmiah Perikanan Dan Kelautan. 12(2), 308–314. DOI: https://doi.org/10.20473/jipk.v12i2.17241
[55] Darlina, M.N., Masazurah, A.R., Jayasankar, P., et al., 2011. Morphometric and molecular analysis of mackerel (Rastrelliger spp) from the west coast of Peninsular Malaysia. Genetics and Molecular Research. 10(3), 2078–2092. DOI: https://doi.org/10.4238/vol10-3gmr1249
[56] Cronin-Fine, L., Stockwell, J.D., Whitener, Z.T., et al., 2013. Application of Morphometric Analysis to Identify Alewife Stock Structure in the Gulf of Maine. Marine and Coastal Fisheries. 5(1), 11–20. DOI: https://doi.org/10.1080/19425120.2012.741558
[57] Moreira, C., Froufe, E., Vaz-Pires, P., et al., 2020. Landmark-based geometric morphometrics analysis of body shape variation among populations of the blue jack mackerel, Trachurus picturatus, from the North-East Atlantic. Journal of Sea Research. 163, 101926. DOI: https://doi.org/10.1016/j.seares.2020.101926
[58] Geiger, M.F., Schreiner, C., Delmastro, G.B., et al., 2016. Combining geometric morphometrics with molecular genetics to investigate a putative hybrid complex: A case study with barbels Barbus spp. (Teleostei: Cyprinidae). Journal of Fish Biology. 88(3), 1038–1055. DOI: https://doi.org/10.1111/jfb.12871
[59] Kourkouta, C., Printzi, A., Geladakis, G., et al., 2021. Long lasting effects of early temperature exposure on the swimming performance and skeleton development of metamorphosing Gilthead seabream (Sparus aurata L.) larvae. Scientific Reports. 11(1), 8787. DOI: https://doi.org/10.1038/s41598-021-88306-4
[60] Díaz-Cruz, J., Fatira, E., Tuset, V.M., et al., 2024. Applying Geometric Morphometrics in Megalopa Larval Stages: Relevance for Species Distribution and Biological Invasion Studies. Contributions to Zoology. 1(aop), 1–23. DOI: https://doi.org/10.1163/18759866-bja10065
[61] Bookstein, F.L., 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge, UK.
[62] Parsons, K.J., Wang, J., Anderson, G., et al., 2015. Nested levels of adaptive divergence: the genetic basis of craniofacial divergence and ecological sexual dimorphism. G3: Genes, Genomes, Genetics. 5(8), 1613–1624. DOI: https://doi.org/10.1534/g3.115.018226
[63] Leary, R.F., Allendorf, F.W., 1989. Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends in Ecology & Evolution. 4(7), 214–217.
[64] Hori, M., 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science. 260(5105), 216–219. DOI: https://doi.org/10.1126/science.260.5105.216
[65] Vega-Trejo, R., Zúñiga-Vega, J.J., Langerhans, R.B., 2014. Morphological differentiation among populations of Rhinella marina (Amphibia: Anura) in western Mexico. Evolutionary Ecology. 28, 69–88. DOI: https://doi.org/10.1007/s10682-013-9667-6
[66] Higham, T.E., Rogers, S.M., Langerhans, R.B., et al., 2016. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proceedings of the Royal Society B. 283, 20161294. DOI: https://doi.org/10.1098/rspb.2016.1294
[67] Klingenberg, C.P., 2016. Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution. 226(3), 113–137. DOI: https://doi.org/10.1007/s00427-016-0539-2
[68] Collyer, M.L., Novak, J.M., Stockwell, C.A., 2005. Morphological divergence of native and recently established populations of White Sands Pupfish (Cyprinodon tularosa). Copeia. 2005(1), 1–11. DOI: https://doi.org/10.1643/CG-03-303R1
[69] Peres-Neto, P.R., Magnan, P., 2004. The influence of swimming demand on phenotypic plasticity and morphological integration: a comparison of two polymorphic charr species. Oecologia. 140, 36–45.
[70] Arbour, J.H., López-Fernández, H., 2013. Ecological variation in South American geophagine cichlids arose during an early burst of adaptive morphological and functional evolution. Proceedings of the Royal Society B: Biological Sciences. 280(1763), 20130849. DOI: https://doi.org/10.1098/rspb.2013.0849
[71] Foth, C., Sookias, R.B., Ezcurra, M.D., 2021. Rapid initial morphospace expansion and delayed morphological disparity peak in the first 100 million years of the archosauromorph evolutionary radiation. Frontiers in Earth Science. 9, 723973. DOI: https://doi.org/10.3389/feart.2021.723973
[72] Morris, M.R., Cardenas, O.R., Lyons, S.M., et al., 2012. Fluctuating asymmetry indicates the optimization of growth rate over developmental stability. Functional Ecology. 26(3), 723–731. DOI: https://doi.org/10.1111/j.1365-2435.2012.01983.x
[73] Mundahl, N.D., Hoffmann, K.A., 2023. Condition, Reproductive Fitness, and Fluctuating Asymmetry in Brook Stickleback: Responses to Anthropogenic Runoff. Fishes. 8(11), 557. DOI: https://doi.org/10.3390/fishes8110557
[74] Yazawa, R., Takeuchi, Y., Amezawa, K., et al., 2015. GnRHa-induced spawning of the Eastern little tuna (Euthynnus affinis) in a 70–m3 land-based tank. Aquaculture. 442, 58–68. DOI: https://doi.org/10.1016/j.aquaculture.2015.01.016
[75] Allenbach, D.M., 2011. Fluctuating asymmetry and exogenous stress in fishes. Reviews in Fish Biology and Fisheries. 21(3), 355–376. DOI: https://doi.org/10.1007/s11160-010-9178-2
[76] Vijendravarma, R.K., Leopold, P., 2022. Non-visual Cues and Indirect Strategies that Enable Discrimination of Asymmetric Mates. Ecology and Evolution. 12(4), e8790.
[77] Su, G., Villéger, S., Brosse, S., 2018. Morphological Diversity of Freshwater Fishes Differs between Realms, but Morphologically Extreme Species are Widespread. Global Ecology and Biogeography. 28(2), 211–221. DOI: https://doi.org/10.1111/geb.12843
[78] Santos, B.S., Quilang, J.P., 2012. Geometric Morphometric Analysis of Arius manillensis and Arius dispar (Siluriformes: Ariidae) Populations in Laguna de Bay, Philippines. Philippine Journal of Science. 141(1), 1–11.
[79] Yen, T.D., Duyen, V.N., Hien, T.T.T., et al., 2019. Variation in Morphometric Characteristics between Cultured and Wild striped Snakehead (Channa striata) Populations in the Mekong Delta. Can Tho University Journal of Science. 11(1), 70–77.
[80] Smith, T.B., Wayne, R.K., Girman, D.J., et al., 1997. A role for ecotones in generating rainforest biodiversity. Science. 276(5320), 1855–1857. DOI: https://doi.org/10.1126/science.276.5320.1855
[81] Lishchenko, F., Jones, J.B., 2021. Application of shape analyses to recording structures of marine organisms for stock discrimination and taxonomic purposes. Frontiers in Marine Science. 8, 667183. DOI: https://doi.org/10.3389/fmars.2021.667183
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Cresencio C. Cabuga, Jr, Ana Marie D. Empeño, Jojean Marie D. Pondang

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.