-
3113
-
2450
-
2440
-
1908
-
1849
The Influence of Atmospheric Microplastics on Global Climate Dynamics: An Interdisciplinary Review
DOI:
https://doi.org/10.30564/jasr.v8i2.10018Abstract
This article examines the growing concern over microplastics in the atmosphere and their potential effects on climate systems and atmospheric circulation. It explores the role of natural aerosols in atmospheric processes, highlighting how these particles influence cloud formation, radiative forcing, and global circulation patterns. It contrasts these natural aerosols with microplastics, which, because of their unique physical and chemical properties, behave differently in the atmosphere. Microplastics, unlike natural aerosols, are resistant to degradation, leading to their cumulative accumulation in the atmosphere. Their persistence and transport in the atmospheric column are influenced by diffusion dynamics, allowing them to travel over long distances, potentially impacting weather patterns and climate systems far from their original sources. Microparticles may also alter cloud properties, influencing precipitation, radiation balance, and atmospheric chemistry. The diffusion behavior of microplastics, their interaction with other airborne pollutants, and their potential to influence advanced climate models are discussed. The cumulative effect of these persistent pollutants, coupled with their resistance to biological degradation, may have serious long-term implications for atmospheric composition and global climate patterns. There is a growing need for further interdisciplinary research into the interaction between microplastics and natural aerosols in order to fully understand their diverse impacts on climate systems and atmospheric dynamics.
Keywords:
Microplastics; Atmospheric Circulation; Aerosols; Climate Impact; Environmental PersistenceReferences
[1] Allen, S., Allen, D., Phoenix, V.R., et al., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience. 12(5), 339–344. DOI: https://doi.org/10.1038/s41561-019-0335-5
[2] Carriera, F., Di Fiore, C., Avino, P., 2024. Occurrence of Microplastics in the Atmosphere: An Overview on Sources, Analytical Challenges, and Human Health Effects. Atmosphere.15, 863. DOI: https://doi.org/10.3390/atmos15070863
[3] OECD, 2022. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. 22 February 2022. Organisation for Economic Co-operation and Development: Paris, France. DOI: https://doi.org/10.1787/de747aef-en
[4] Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin. 62(8), 1596–1605. DOI: https://doi.org/10.1016/j.marpolbul.2011.05.030
[5] Geyer, R., Jambeck, J.R., Law, K.L., 2017. Production, use, and fate of all plastics ever made. Science Advances. 3(7), e1700782. DOI: https://doi.org/10.1126/sciadv.1700782
[6] Brahney, J., Mahowald, N., Prank, M., et al., 2021. Constraining the atmospheric limb of the plastic cycle. Proceedings of the National Academy of Sciences of the United States of America. 118(16), e2020719118. DOI: https://doi.org/10.1073/pnas.2020719118
[7] Wang, Y., Chen, X., Zhang, Y., et al., 2023. Airborne Hydrophilic Microplastics in Cloud Water at High Altitudes and Their Role in Cloud Formation. Environ. Chem. Lett. 2023, 21, 3055–3062. DOI: https://doi.org/10.1007/s10311-023-01626-x
[8] Hu, Y., Fu, Q., 2007. Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics. 7(19), 5229–5236. DOI: https://doi.org/10.5194/acp-7-5229-2007
[9] Lionello, P., D'Agostino, R., Ferreira, D., et al., 2024. The Hadley circulation in a changing climate. Annals of the New York Academy of Sciences. 1534(1), 69–93. DOI: https://doi.org/10.1111/nyas.15114
[10] Allen, R.J., Sherwood, S.C., 2011. The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dynamics. 36, 1959–1978. DOI: https://doi.org/10.1007/s00382-010-0898-8
[11] Lu, J., Vecchi, G. A., Reichler, T., 2007. Expansion of the Hadley cell under global warming. Geophysical Research Letters, 34(6), L06805. DOI: https://doi.org/10.1029/2006GL028443
[12] Spracklen, D.V., Arnold, S.R., Taylor, C.M., 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature. 489(7415), 282–285. DOI: https://doi.org/10.1038/nature11390
[13] Andreae, M.O., Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews. 89(1–2), 13–41. DOI: https://doi.org/10.1016/j.earscirev.2008.03.001
[14] Revell, L.E., Kuma, P., Schulz, M., et al., 2021. Direct radiative effects of airborne microplastics. Nature. 598(7881), 462–467. DOI: https://doi.org/10.1038/s41586-021-03864-x
[15] Aeschlimann, M., Li, G., Kanji, Z.A., et al., 2022. Microplastics and nanoplastics in the atmosphere: The potential impacts on cloud formation processes. Nature Geoscience. 15, 967–975. DOI: https://doi.org/10.1038/s41561-022-01051-9
[16] Seifried, T.M., Nikkho, S., Morales Murillo, A., et al., 2024. Microplastic particles contain ice nucleation sites that can be activated by atmospheric aging. Environmental Science & Technology. 58(35), 15711–15721. DOI: https://doi.org/10.1021/acs.est.4c02639
[17] Seifried, T.M., Nikkho, S., Murillo, A.M., et al., 2025. Potential influence of microplastics on cloud formation through heterogeneous ice nucleation. Proceedings of the EGU General Assembly 2025; April 27–May 2 2025; Vienna, Austria & Online. DOI: https://doi.org/10.5194/egusphere-egu25-12448
[18] Busse, H.L., Ariyasena, D.D., Orris, J., et al., 2024. Pristine and aged microplastics can nucleate ice through immersion freezing. ACS ES&T Air. 1(12), 1579–1588. DOI: https://doi.org/10.1021/acsestair.4c00146
[19] Li, K., Du, L., Qin, C. et al. 2024. Microplastic pollution as an environmental risk exacerbating the greenhouse effect and climate change: a review. Carbon Research. 3, 9. DOI: https://doi.org/10.1007/s44246-023-00097-7
[20] Evangeliou, N., Grythe, H., Klimont, Z., et al., 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications. 11(1), 3381. DOI: https://doi.org/10.1038/s41467-020-17201-9
[21] Tatsii, D.; et al. Shape matters: Long-range transport of microplastic fibers in the atmosphere. Nat. Commun. 2023, 14, 7898. DOI:https://doi.org/10.1021/acs.est.3c08209
[22] Hartmann, N.B., Hüffer, T., Thompson, R.C., et al., 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology. 53, 1039–1047. DOI: https://doi.org/10.1021/acs.est.8b05297
[23] Dris, R., Gasperi, J., Saad, M., et al., 2015. Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry. 12(5), 592–599. DOI: https://doi.org/10.1071/en14167
[24] Kole, P.J., Löhr, A.J., Van Belleghem, F.G.A.J., et al., 2017. Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health. 14(10), 1265. DOI: https://doi.org/10.3390/ijerph14101265
[25] Staten, P.W., Lu, J., Grise, K.M., et al., 2018. Re-examining tropical expansion. Nature Climate Change. 8(9), 768–775. DOI: https://doi.org/10.1038/s41558-018-0246-2
[26] Chemke, R., Polvani, L.M., 2019. Exploiting the abrupt 4×CO₂ scenario to elucidate tropical expansion mechanisms. Journal of Climate. 32(3), 859–875. DOI: https://doi.org/10.1175/JCLI-D-18-0330.1
[27] Zhang, Y., Kang, S., Allen, S., et al., 2020. Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews. 203, 103118. DOI: https://doi.org/10.1016/j.earscirev.2020.103118
[28] Napper, I.E., Davies, B.F.R., Clifford, H., et al., 2020. Reaching new heights in plastic pollution—Preliminary findings of microplastics on Mount Everest. One Earth. 3(5), 621–630. DOI: https://doi.org/10.1016/j.oneear.2020.10.020
[29] Chand, D., Wood, R., Anderson, T. et al. 2009. Satellite-derived direct radiative effect of aerosols dependent on cloud cover. Nature Geoscience. 2, 181–184. DOI: https://doi.org/10.1038/ngeo437
[30] Boucher, O., Randall, D., Artaxo, P., et al., 2013. Clouds and aerosols. In: Stocker, T.F., Qin, D., Plattner, G.-K., et al. (eds.). Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC: Cambridge, UK. pp. 571–658. DOI: https://doi.org/10.1017/CBO9781107415324.016
[31] Rotstayn, L. D.; Lohmann, U. 2002. Tropical rainfall trends and the indirect aerosol effect. Journal of Climate. 15, 2103–2116. https://doi.org/10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2
[32] IPCC, 2021. Climate Change 2021: The Physical Science Basis. Cambridge University Press: Cambridge, UK. DOI: https://doi.org/10.1017/9781009157896
[33] Lelieveld, J., Evans, J.S., Fnais, M., et al., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 525(7569), 367–371. DOI: https://doi.org/10.1038/nature15371
[34] Bond, T.C., Doherty, S.J., Fahey, D.W., et al., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres. 118(11), 5380–5552. DOI: https://doi.org/10.1002/jgrd.50171
[35] Rosenfeld, D., Sherwood, S.C., Wood, R., et al., 2014. Climate effects of aerosol-cloud interactions. Science. 343(6169), 379–380. DOI: https://doi.org/10.1126/science.1247490
[36] Li, Z., Lau, W.K.M., Ramanathan, V., et al., 2016. Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics. 54(4), 866–929. DOI: https://doi.org/10.1002/2015RG000500
[37] Oke, T.R., 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society. 108(455), 1–24. DOI: https://doi.org/10.1002/qj.49710845502
[38] Salehi, M., Pincus, L.N., Deng, B., et al., 2024. Microplastics: From Intrinsic Properties to Environmental Fate. Environmental Engineering Science. 41(11), 425–435. DOI: https://doi.org/10.1089/ees.2024.0232
[39] Dris, R., Gasperi, J., Mirande, C., et al., 2016. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution. 221, 453–458. DOI: https://doi.org/10.1016/j.envpol.2016.12.013
[40] Wang, W., Wang, Q., Lu, S. et al., 2023. Behavior of Autumn Airborne Ragweed Pollen and Its Size-Segregated Allergens (Amb a 1): A study in Urban Saitama, Japan. Atmosphere. 14, 247. https://doi.org/10.3390/atmos14020247
[41] Allen, S., Allen, D., Baladima, F., et al., 2021. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nature Communications. 12(1), 7242. DOI: https://doi.org/10.1038/s41467-021-27454-7
[42] Dris, R., Gasperi, J., Mirande, C. et al., 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution. 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013
[43] Bergmann, M., Gutow, L., Klages, M., 2019. Marine Anthropogenic Litter. Springer: Berlin, Germany. DOI: https://doi.org/10.1007/978-3-319-16510-3
[44] Peng, X., Chen, M., Chen, S., et al., 2018. Microplastics contaminate the deepest part of the world's ocean. Geochemical Perspectives Letters. 9(1), 1–5. DOI: https://doi.org/10.7185/geochemlet.1829
[45] Sharma, S., Sharma, V., Chatterjee, S. 2023. Contribution of Plastic and Microplastic to Global Climate Change and Their Conjoining Impacts on the Environment—A Review. Science of the Total Environment. 875, 162627. https://doi.org/10.1016/j.scitotenv.2023.162627
[46] Parvez, M., Ullah, H., Faruk, O., et al., 2024. Role of Microplastics in Global Warming and Climate Change: A Review. Water Air & Soil Pollution. 235(3), 201. DOI: https://doi.org/10.1007/s11270-024-07003-w
[47] Rednikin, A. R., Frank, Y. A., Rozhin, A. O. 2024. Airborne Microplastics: Challenges, Prospects, and Experimental Approaches. Atmosphere. 15(11), 1380. https://doi.org/10.3390/atmos15111380
[48] Fischer, E.M., Schär, C., 2010. Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience. 3, 398–410. DOI: https://doi.org/10.1038/ngeo866
[49] Zhao, S., Mincer, T.J., Lebreton, L., et al., 2023. Pelagic Microplastics in the North Pacific Subtropical Gyre: A Prevalent Anthropogenic Component of the Particulate Organic Carbon Pool. PNAS Nexus. 2(3), pgad070. DOI: https://doi.org/10.1093/pnasnexus/pgad070
[50] Pabortsava, K., Lampitt, R.S., 2020. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nature Communications. 11(1), 4073. DOI: https://doi.org/10.1038/s41467-020-17932-9
[51] Hossain, M.S., Yu, J., Sarker, P.K., et al., 2024. Microplastic accumulation, morpho-polymer characterization, and environmental impacts. Frontiers in Sustainable Food Systems. 8, 1397348. DOI: https://doi.org/10.3389/fsufs.2024.1397348
[52] Koren, I., Remer, L.A., Kaufman, Y.J., et al., 2007. On the Twilight Zone between Clouds and Aerosols. Geophysical Research Letters. 34, L09804. https://doi.org/10.1029/2007GL029253
[53] Ramaswamy, V., Boucher, O. Haigh, J., et al., 2001. Radiative forcing of climate change. In: Houghton, J.T., Ding, Y., Griggs, D.J., et al. (eds.). Climate Change 2001: The Scientific Basis. IPCC: Cambridge, UK. pp. 349–416.
[54] Screen, J.A., Bracegirdle, T.J., Simmonds, I., 2018. Polar Climate Change as Manifest in Atmospheric Circulation. Current Climate Change Reports. 4, 383–395. DOI: https://doi.org/10.1007/s40641-018-0111-4
[55] Cole, M., Lindeque, P., Fileman, E., et al., 2013. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin. 62(12), 2588–2597. DOI: https://doi.org/10.1016/j.marpolbul.2011.09.025
[56] Cózar, A., Echevarría, F., González-Gordillo, J.I., et al., 2014. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America. 111(28), 10239–10244. DOI: https://doi.org/10.1073/pnas.1314705111
[57] Kane, I.A., Clare, M.A., Miramontes, E., et al., 2020. Seafloor microplastic hotspots controlled by deep-sea circulation. Science. 368(6495), 1140–1145. DOI: https://doi.org/10.1126/science.aba5899
[58] Uurasjärvi, E., Pääkkönen, M., Setälä, O., et al., 2021. Microplastics accumulate to thin layers in the stratified Baltic Sea. Environmental Pollution. 268, 115700. DOI: https://doi.org/10.1016/j.envpol.2020.115700
[59] Narloch, I., Gackowska, A., Wejnerowska, G., 2022. Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environmental Pollution. 315, 120453. DOI: https://doi.org/10.1016/j.envpol.2022.120453
[60] Zobkov, M.B., Esiukova, E.E., Zyubin, A.Y., et al., 2019. Microplastic content variation in water column: The observations employing a novel sampling tool in stratified Baltic Sea. Marine Pollution Bulletin. 138, 193–205. DOI: https://doi.org/10.1016/j.marpolbul.2018.11.047
[61] Woodall, L.C., Sanchez-Vidal, A., Canals, M., et al., 2014. The deep sea is a major sink for microplastic debris. Royal Society Open Science. 1(4), 140317. DOI: https://doi.org/10.1098/rsos.140317
[62] Shamskhany, A., Li, Z., Patel, P., et al., 2021. Evidence of Microplastic Size Impact on Mobility and Transport in the Marine Environment: A Review and Synthesis of Recent Research. Frontiers in Marine Science. 8, 760649. DOI: https://doi.org/10.3389/fmars.2021.760649
[63] Choy, C.A., Robison, B.H., Gagné, T.O., et al., 201. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Scientific Reports. 9(1), 7843. DOI: https://doi.org/10.1038/s41598-019-44117-2
[64] Cózar, A., Martí, E., Duarte, C.M., et al., 2017. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Science Advances. 3(4), e1600582. DOI: https://doi.org/10.1126/sciadv.1600582
[65] Iversen, T., Hodnebrog, Ø., Seland Graff, L., et al., 2023. Future Winter Precipitation Decreases Associated With the North Atlantic Warming Hole and Reduced Convection. Journal of Geophysical Research: Atmospheres. 128(12), e2022JD038374. DOI: https://doi.org/10.1029/2022JD038374
[66] Vellinga, M., Wood, R.A., 2002. Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation. Climate Change. 54(3), 251–267. DOI: https://doi.org/10.1023/A:1016168827653
[67] Rahmstorf, S., Crucifix, M., Ganopolski, A., et al., 2005. Thermohaline circulation hysteresis: A model intercomparison. Geophysical Research Letters. 32(23), L23605. DOI: https://doi.org/10.1029/2005GL023655
[68] Bryden, H., Longworth, H., Cunningham, S., 2005. Slowing of the Atlantic meridional overturning circulation at 25° N. Nature. 438(7068), 655–657. DOI: https://doi.org/10.1038/nature04385
[69] Weijer, W., Cheng, W., Drijfhout, S.S., et al., 2019. Stability of the Atlantic Meridional Overturning Circulation: A review and synthesis. Journal of Geophysical Research: Oceans. 124(8), 5336–5375. DOI: https://doi.org/10.1029/2019JC015083
[70] Jacob, D., Goettel, H., Jungclaus, J., et al., 2005. Slowdown of the thermohaline circulation causes enhanced maritime climate influence and snow cover over Europe. Geophysical Research Letters. 32(21), L01703. DOI: https://doi.org/10.1029/2005GL023286
[71] Bellomo, K., Mehling, O., 2024. Impacts and State‐Dependence of AMOC Weakening in a Warming Climate. Geophysical Research Letters. 51(10), e2023GL107624. DOI: https://doi.org/10.1029/2023GL107624
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Estefan M. da Fonseca, Christine C. Gaylarde

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.