Review and Microphysics of the Maximum Electricity Atmospheric Activity in the World: the Catatumbo Lightning (Venezuela)

Authors

  • Nelson Falcón Universidad de Carabobo, FACYT, Dpto de Física, Laboratory of Physics of the Atmosphere and Ultraterrestrial Space, Apdo. Postal 129 Avda, Bolívar Norte, Valencia 2001, Carabobo, Venezuela

DOI:

https://doi.org/10.30564/jasr.v4i2.2740

Abstract

A review of the state of knowledge and phenomenology on the site of the greatest atmospheric electrical activity in the world, known as the Catatumbo Lightning, located southeast of Lake Maracaibo (Venezuela), is presented. A microphysical model is presented to explain the charging process through electrical displacement within the cells of the cloud, incorporating the role of the self-polarization of ice and methane molecules as pyroelectric aerosol, which accounts for the phenomenology and is consistent with electrification in thunderstorm. It is concluded that the pyroelectric model allows to explain the phenomenology of the rapid discharges of the flashes in the Catatumbo lightning and could be applied in outer planetary lightning.

Keywords:

Catatumbo lightning, Atmospheric electricity, Microphysical of cloud, Aerosols, Methane

References

[1] Christian, H.J., Blakeslee, R.J., Goodman, S.J., Mach, D.A., Stewart, M.F., Buechler,D.E., Koshak, W.J., Hall, J.M., Boeck, W.L., Driscoll, K.T., Boccippio, D.J., (1999) .The Lightning Imaging Sensor. In: Proceedings of the 11th International Conference on Atmospheric Electricity. Huntsville, AL, NASA, pp. 746-749.

[2] Abarca, S.F., Corbosiero, K.L., Galarneau Jr., T.J., (2010) An evaluation of the WorldWide Lightning Location Network (WWLLN) using the National LightningDetection Network (NLDN) as ground truth. Journal of Geophysical Research115, D18206. DOI: https://doi.org/10.1029/2009JD013411

[3] Albrecht, R., Goodman, S., Buechler, D. E.; Chronis, T., (2009) Tropical frequency and distribution of lightning based on 10 years of observations from space by the Lightning Image Sensor (LIS) in Proc. Fourth Conference on the Meteorological Applications of Lightning Data, Phoenix AZ, Am. Met. Soc 9, https://ntrs.nasa.gov/api/citations/20110015779/downloads/20110015779.pdf

[4] Albrecht, R.I., Goodman, S.J., Petersen, W.A., Buechler, D.E., Bruning, E.C., Blakeslee,R.J., Christian, H.J., (2011) The 13 years of TRMM Lightning Imaging Sensor:from individual flash characteristics to decadal tendencies. In: Proceedings ofthe XIV International Conference on Atmospheric Electricity. 08- 12 August2011, Rio de Janeiro, Brazil. https://ntrs.nasa.gov/citations/20110015779

[5] Rachel I. Albrecht, R.I. Steven J., Goodman, D.E. Buechler, R.. Blakeslee, J and Hugh J. C. (2016) Where are the lightning hotspots on Earth?Bulletin of the American Meteorological Society · February. DOI: https://doi.org/10.1175/BAMS-D-14-00193.1

[6] Falcón, N., Pitter, W., Muñoz, A., Barros, T., Viloria, A., and Nader, D. (2000).Modelo Electroatmósferico del Relámpago sobre el Río Catatumbo, Sci. J. from Exp. Faculty of Sc.(Ciencia) 8, 2,155-167. https://produccioncientificaluz.org/index.php/ciencia/article/view/9042/9032

[7] Falcón, N. “Sobre el Origen y Recurrencia del Relámpago del Rio Catatumbo”. Faraute de Ciencias y Tecnología, 1, 1, 40-49, 2006. http://servicio.bc.uc.edu.ve/facyt/v1n1/1-1-4.pdf

[8] Tarazona, J., Ferro, C., Urdaneta, A.J., (2006) Cartographic representation of theVenezuelan keraunic activity. In: Proceedings of the Conference of theInternational Council on Large Electric Systems. August 28–September 1, Paris, France.

[9] Lope de Vega, F. (1953) Obras Escogidas: La Dragontea, pp. 324, Madrid: Aguilar Ed.

[10] Humboldt, A. (1991). Viaje a las regiones equinocciales del Nuevo Continente, pp. 226. Caracas: Monte Ávila Editores.

[11] Codazzi, A. (1960) Resumen de la Geografía de Venezuela, pp. 23, Caracas: Biblioteca Venezolana de Cultura.

[12] Centeno, M. (1968) “El Faro de Maracaibo” o “Relámpago del Catatumbo”. Boletín de la Academia de Ciencias Físicas, Matemáticas y Naturales 28 (79) 353-365.

[13] Zavrostky, A. (1975) .El nivel actual de los conocimientos acerca del “Faro del Catatumbo”. Revista Forestal Venezolana Nº 25, Ediciones ULA.

[14] Zavrostky, A. (1991) Faro del Catatumbo: lo conocido y lo desconocido. Carta Ecológica . Ediciones ULA Nº 56.

[15] Falcón, N.; Muñoz, A.; Pitter, W. (2001) El Relámpago del Catatumbo: Fenomenología de un Evento Electro-Atmosférico en Venezuela XXVIII Bienal de la Sociedad Española de Física. Sevilla (España) ISBN 8493215015.

[16] Falcon, N., Williams, P., Muñoz, A., Nader, D., (2000) Microfísica del relámpago del Catatumbo. Universidad de Carabobo, Valencia, Venezuela. Ingeniería UC,Junio, vol. 7, número 001. http://servicio.bc.uc.edu.ve/ingenieria/revista/a7n1/7-1-8.pdf

[17] Falcon, N., (2011) Phenomenology and microphysics of lightning flash of the Catatumbo River (Venezuela). Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, ICAE, 1-4. DOI: https://doi.org/10.13140/RG.2.1.3378.0240

[18] Muñoz, Á.G., Díaz-Lobatón, J., Chourio, X, Stock, M.J. (2016) Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers Atmospheric Research 172-173 147-162 https://doi.org/10.1016/j.atmosres.2015.12.018

[19] Bürgesser, R. E., Nicora, M. G, Ávila E. E. (2012) Characterization of the lightning activity of “Relámpago del Catatumbo.”. J. Atmos. Sol. Terr. Phys., 77, 241-247. DOI: https://doi.org/10.1016/j.jastp.2012.01.013

[20] Desch, S. J., Borucki, W. J., Russell, C. T. and BarNun, A., (2002) Progress in planetary lightning, Rep. Prog. Phys. 65, 955-997. http://www.astro.wisc.edu/~ewilcots/courses/astro340s04/readings/planetarylightning.pdf

[21] Masuelli, S., Scauzzo, C. M. and Caranti, G. M. , (1997) Convective electrification of clouds: A numerical study, J. Geophys. Res. 102, D10, 11049-11059.

[22] Tzur, I. and Levin, Z., (1981) Ions and Precipitation Charging in Warm and Cold Clouds as Simulated in One-Dimensional Time-Dependent Models, J. Atmos. Sci. 38, 2444-2461. https://ui.adsabs.harvard.edu/link_gateway/1981JAtS...38.2444T/doi:10.1175/1520-0469(1981)038%3C2444:IAPCIW%3E2.0.CO;2.

[23] Tokano, T., Molina, G.J., Lammer, H. and Stumptner, W. (2001) Modelling of thunderclouds and lightning generation on Titan, Planet. Space Sci. 49, 539-544. DOI: https://doi.org/10.1016/S0032-0633(00)00170-7

[24] Saunders, C.P.R., (1993) A Review of Thunderstorm Electrification Processes, J. Appl. Meteorol, 32, 642- 655. https://doi.org/10.1175/1520-0450

[25] Rakov, V.A. and Uman, M.A.(2003) .Lightings Physics and Effects. Cambridge Univ. Press. pp. 1-12, 321-341. DOI: https://doi.org/978-0-521-03541-5

[26] Saunders, C. (2008) Charge Separation Mechanisms in Clouds. Space Sci Rev 137: 335-353. DOI: https://doi.org/10.1007/s11214-008-9345-0

[27] Desch, S. J., Borucki, W. J., Russell, C. T. and BarNun, A. (2002) Progress in planetary lightning, Rep. Prog. Phys. 65, 955-997. https://iopscience.iop.org/article/10.1088/0034-4885/65/6/202/pdf

[28] Yair, Y. (2012) New results on planetary lightning. Advances in Space Research 50 293-310. https://www.sciencedirect.com/science/article/abs/pii/S0273117712002566

[29] Landau, L., and Lifshitz, E., (1975) Electrodinámica de los medios Continuos, Reverté Barcelona, pp.70- 73.ISBN 978-84-291-4089-7.

[30] Falcon, N. and Quintero. A. (2010) Pyroelectrical Model for Intracloud Lightning. Exp. Faculty of Sc. (Ciencia) , 18 , 2, 115-126.. http://produccioncientificaluz.org/index.php/ciencia/article/view/9973

[31] Gringel, W., Rosen, J.K. and Hoffman, D.J., (1986). Electrical structure from 0 to 30 km; in the Earth’s Electrical Environment, Krider, E. P. & Roble, R.I. Ed. Washinton DC Nacional Academia Press, pp 166-182.

[32] Falcón, N.; Quintero, A.,Ramirez, L. (2007) Electrical Self-polarization in Intracloud Lightning Flashes. Proceedings of th 13th International Conference on Atmospheric Electricity (ICAE) Y. Zhao y X. Qie Beijing-China Eds. Volumen I, 280-283. http://www.casnw.net/icae2007

[33] Lide, D.R. ed. (1997) Handbook of Chemistry and Physics, CRC England, pp3467. ISBN-10: 0849304776.

[34] Quintero, A.; Falcón, N., Ramirez, L. (2007) The Methane Influence as a Self-Polarized Aerosol in Titan’s Electrical Activity 13th International Conference on Atmospheric Electricity (ICAE) Zhao,Y y Qie, X Ed. Beijing. I, 307-310. http://www.casnw.net/icae2007

[35] Danko, M., Országh, J., Lacko, M. , Š. Matejčík (2011) Electron Induced Fluorescence Spectra of Methane. WDS’11 Proceedings of Contributed Papers, Part II, 192–197. https://www.semanticscholar.org/paper/Electron-Induced-Fluorescence-Spectra-of-Methane-Danko-Orsz%C3%A1gh/1d1d772760162fbd1abe336683c433b39f5adf64.

Downloads

How to Cite

Falcón, N. (2021). Review and Microphysics of the Maximum Electricity Atmospheric Activity in the World: the Catatumbo Lightning (Venezuela). Journal of Atmospheric Science Research, 4(2), 12–21. https://doi.org/10.30564/jasr.v4i2.2740

Issue

Article Type

Article