Statistical Modeling of PM2.5 Concentrations: Prediction of Extreme Events and Evaluation of Advanced Methods for Air Quality Management

Authors

  • Amaury de Souza

    Institute of Physic, Federal University of Mato Grosso do Sul, Campo Grande 79070- 900, Brazil

  • José Roberto Zenteno Jimenez

    Geophysical Engineering, ESIA-Unidad Ticóman Mayor Gustavo A. Madero. National Polytechnic Institute, México City 07340, México

  • José Francisco de Oliveira- Júnior

    Institute of Atmospheric Sciences (ICAT)Federal University of Alagoas, Maceió 57072-900, Brazil

  • Kelvy Rosalvo Alencar Cardoso

    Institute of Atmospheric Sciences (ICAT)Federal University of Alagoas, Maceió 57072-900, Brazil

DOI:

https://doi.org/10.30564/jasr.v8i3.10878
Received: 21 May 2025 | Revised: 8 July 2025 | Accepted: 16 July 2025 | Published Online: 22 July 2025

Abstract

This study analyzes the statistical behavior of PM2.5 concentrations in Brasília using advanced probabilistic and time series modeling to support air quality management and extreme event forecasting. The methods applied include Generalized Extreme Value (GEV) distributions, Bayesian inference with Log-Normal distribution, ARIMA models, and quasi-Gaussian approaches. Model performance was evaluated through statistical metrics such as RMSE, R², and the Approximation Index, with parameter estimation improved using the Metropolis-Hastings algorithm. Results show that the GEV 1 model provides a better fit for lower PM2.5 concentrations, while GEV 2 performs better at predicting extreme events. The log-logistic and log-normal distributions also demonstrated good fit, capturing asymmetry and long-tail behavior typical of environmental data. The ARIMA model identified seasonal patterns and supported short-term forecasts, though its predictive capacity for extreme values was limited. Bayesian inference allowed robust estimation of parameter uncertainties and revealed the non-negligible likelihood of severe pollution events. The study concludes that model selection should depend on the forecasting objective: GEV for extremes, Log-Normal for general variability, and ARIMA for trends and seasonality. The use of MCMC sampling techniques significantly improved model robustness. These findings provide a comprehensive framework for understanding air pollution dynamics and guiding public policy on air quality in urban environments.

Keywords:

PM2.5; GEV; ARIMA; Bayesian Inference; Metropolis-Hastings

References

[1] World Health Organization (WHO). (2021). Air quality guidelines: Global update 2021. WHO: Geneva, Switzerland. Retrieved August 7, 2025, Available from: https://www.who.int/publications/i/item/9789240034228

[2] Souza, A. D., Oliveira-Júnior, J. F. D., Cardoso, K. R. A., Fernandes, W. A., & Pavao, H. G. (2025). The Impact of Meteorological Variables on Particulate Matter Concentrations. Atmosphere, 16(7), 875. DOI: https://doi.org/10.3390/atmos16070875

[3] de Moura FR, da Silva Júnior FMR. 2030 Agenda: discussion on Brazilian priorities facing air pollution and climate change challenges. Environ Sci Pollut Res Int. 2023 Jan;30(3):8376-8390. DOI: https://doi.org/10.1007/s11356-022-24601-5.

[4] .Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag. DOI:https://doi.org/10.1007/978-1-4471-3675-0

[5] . Hoinaski, L., Will, R., & Ribeiro, C. B., 2024. Brazilian Atmospheric Inventories – BRAIN: a comprehensive database of air quality in Brazil. Earth System Science Data, 16, 2385–2405. DOI:https://doi.org/10.5194/essd-16-2385-2024

[6] Jimenez, J.R.Z., 2019. Prediction of concentrations of suspended particle levels of 2.5 micrometers (PM2.5) in Mexico City with probability distribution functions and its trend. International Journal of Latest Research in Engineering and Technology. 5(4), 1–17.

[7] Willmott, C. J., Matsuura, K., & Robeson, S. M., 2009. Ambiguities inherent in sums-of-squares-based error statistics. Atmospheric Environment, 43(3), 749–752. DOI: 10.1016/j.atmosenv.2008.10.005.

[8] Mann, H.B., 1945. Nonparametric tests against trend. Econometrica. 13(3), 245–259. DOI: https://doi.org/10.2307/1907187

[9] Kendall, M.G., 1975. Rank Correlation Methods, 4th ed. Charles Griffin: London, UK.

[10] Hamed, K.H., Rao, A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology. 204(1–4), 182–196. DOI: https://doi.org/10.1016/S0022-1694(97)00125-X

[11] Yue, S., Wang, C.Y., 2004. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management. 18(3), 201–218. DOI: https://doi.org/10.1023/B:WARM.0000043140.61082.60

[12] Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Applied Statistics. 28(2), 126–135. DOI: https://doi.org/10.2307/2346729

[13] Mota, P.H.S., Rocha, S.J.S.S., Castro, N.L.M., et al., 2019. Forest fire hazard zoning in Mato Grosso State, Brazil. Land Use Policy. 88, 104206. DOI: https://doi.org/10.1016/j.landusepol.2019.104206

[14] Tomei, J., Lyrio de Oliveira, L., de Oliveira Ribeiro, C., et al., 2020. Assessing the relationship between sugarcane expansion and human development at the municipal level: A case study of Mato Grosso do Sul, Brazil. Biomass and Bioenergy. 141, 105700. DOI: https://doi.org/10.1016/j.biombioe.2020.105700

[15] Abreu, M.C., Lyra, G.B., de Oliveira Júnior, J.F., et al., 2022. Temporal and spatial patterns of fire activity in three biomes of Brazil. Science of the Total Environment. 844, 157138. DOI: https://doi.org/10.1016/j.scitotenv.2022.157138

[16] Nunes, R.S.C., Souza, A., Villar Hernández, B.J., et al., 2023. Fires in Brazilian biomes. Mercator (Fortaleza). 22, e22023. DOI : https://doi.org/10.4215/rm2023.e22023

[17] Correia Filho, W.L.F., Da Costa, R.R., Tavella, R.A., et al., 2024. Evaluation of the PM2.5 concentrations in South America: Climatological patterns and trend analysis. Atmospheric Environment. 338, 120800. DOI: https://doi.org/10.1016/j.atmosenv.2024.120800

[18] Silveira, V.R., Oliveira Júnior, J.F., Silva, M.S., et al., 2021. Analysis of urban industrial expansion and increasing level of ozone concentration as subsiding an environmental management plan for the east of Rio de Janeiro metropolitan area – Brazil. Land Use Policy. 101, 105148. DOI: https://doi.org/10.1016/j.landusepol.2020.105148

[19] Clauset, A., Shalizi, C.R., Newman, M.E.J., 2009. Power law distributions in empirical data. SIAM Review. 51(4), 661–703. DOI: https://doi.org/10.1137/070710111

[20] Pope, C.A. III, Burnett, R.T., Thun, M.J., et al., 2002. Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution. JAMA. 287(9), 1132–1141. DOI: 10.1001/jama.287.9.1132

[21] Brook, R.D., Franklin, B., Cascio, W., et al., 2004. Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation. 109(21), 2655–2671. DOI: 10.1161/01.CIR.0000128587.30041.C8

[22] Bell, M.L., Dominici, F., Samet, J.M., 2005. A meta analysis of time series studies of ozone and mortality with comparison to the National Morbidity, Mortality, and Air Pollution Study. Epidemiology. 16(4), 436–445. DOI: 10.1097/01.ede.0000165817.40152.85

[23] Pope, C. A., Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709–742. DOI: 10.1080/10473289.2006.10464485.

[24] Pereira, G. M., Kamigauti, L. Y., Pereira, R. F., et al., 2025. Source apportionment and ecotoxicity of PM₂.₅ pollution events in a major Southern Hemisphere megacity: influence of a biofuelimpacted fleet and biomass burning. Atmospheric Chemistry and Physics, 25, 4587–4606. DOI:https://doi.org/10.5194/acp-25-4587-2025

[25] Jacob, D. J., Winner, D. A., 2009. Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63. DOI: 10.1016/j.atmosenv.2008.09.051

[26] Silveira, G. d. O., Azevedo, G. M. G. V. d., Tavella, R. A., et al., 2025. A Pilot Study with Low-Cost Sensors: Seasonal Variation of Particulate Matter Ratios and Their Relationship with Meteorological Conditions in Rio Grande, Brazil. Climate, 13(4), 71. DOI:https://doi.org/10.3390/cli13040071.

[27] Lelieveld, J., Evans, J. S., Fnais, M.,et al., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371. DOI: https://doi.org/10.1038/nature15371

[28] Moreira, G. A., Carbone, S., GuerreroRascado, J. L., et al., 2025. Evidence of the consequences of the prolonged fire season on air quality and public health from 2024 São Paulo (Brazil) data. Scientific Reports, 15, Article 28337. DOI:https://doi.org/10.1038/s41598-025-08542-w

Downloads

How to Cite

Souza, A. de, Jimenez, J. R. Z., Júnior, J. F. de O.-., & Cardoso, K. R. A. (2025). Statistical Modeling of PM2.5 Concentrations: Prediction of Extreme Events and Evaluation of Advanced Methods for Air Quality Management. Journal of Atmospheric Science Research, 8(3), 67–92. https://doi.org/10.30564/jasr.v8i3.10878