“Friagem” Events in the Brazilian Amazon, Changes and Variability in Its Climatological Patterns

Authors

  • Nadja Núcia Marinho Batista

    Laboratório de Meteorologia (LAMET), Universidade Estadual do Norte Fluminense (UENF), Macaé, RJ, Brasil

  • Marcelo Barbio Rosa

    Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP 12227-010, Brazil

  • María Cleofé Valverde

    Universidade Federal do ABC (UFABC), Santo André, SP 09280-560, Brazil

  • Mary Toshie Kayano

    Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus, AM 69036-595, Brazil

  • Nelson Jesuz Ferreira

    Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, SP 12227-010, Brazil

DOI:

https://doi.org/10.30564/jasr.v8i3.11069
Received:18 May 2025 | Revised: 7 July 2025 | Accepted: 17 July 2025 | Published Online: 24 July 2025

Abstract

Friagem events in the southwestern Brazilian Amazon including their changes, variability and climatological features during the 1979–2020 period were examined. The incursion of polar origin cold air mass into the region during austral autumn and winter, which leads to the abrupt drop of the air temperature, characterizes the friagem event. Sixty-five friagem events were identified during the analysis period. These events are more frequent in July and August, with a decreasing trend in both frequency and duration over the years. The average intensity was 14.8 °C, representing a 5°C drop in relation to the average minimum air temperature in the study domain. Additionally, the most intense events occurred in La Niña years and during the positive phase of the Antarctic Oscillation. On the global scale, friagem event is associated with the zonal wavenumber 3-4 pattern in the 500 hPa geopotential anomaly field, with a northwest-southeast oriented anomalous anticyclone extending from the southeast Pacific, across southern South America to southwestern Atlantic, which is flanked to the northeast by an anomalous cyclone over southern Brazil and the adjacent Atlantic. Friagem is also associated with negative sea surface temperature (SST) anomalies in the central and eastern tropical Pacific resembling the La Niña pattern, and negative SST anomalies in the South Atlantic off southeast and south Brazil. This study contributes to improving our knowledge of the friagem events in the Amazon, highlighting the importance of monitoring in the context of climate change and interannual climate variability associated with El Niño and La Niña.

 

Keywords:

Friagem; Brasilian Amazon; Wavenumber 3-4 Pattern; ENSO

References

[1] Molinier, M., Guyot, J.L., Oliveira, E., et al., 1994. Hydrology of the Amazon River Basin. A Água em Revista. 3, 31–36. (in Portuguese)

[2] Marengo, J.O., 1984. Synoptic-Climatic Study of the Friajes (Friagems) in the Peruvian Amazon. Revista Forestal del Perú. 12(1–2), 55–80. (in Spanish)

[3] Marengo, J.O., Nobre, C.A., 1997. Climatic Impacts of ‘‘Friagens’’ in Forested and Deforested Areas of the Amazon Basin. American Meteorological Society. 36(11), 1553–1566. DOI: https://doi.org/10.1175/1520-0450(1997)036<1553:CIOFIF>2.0.CO;2

[4] Marengo, J.O., Cornejo, A., Satyamurty, P., et al., 1997. Cold Surges in Tropical and Extratropical South America: The Strong Event in June 1994. Monthly Weather Review. 125(11), 2759–2786. DOI: https://doi.org/10.1175/1520-0493(1997)125<2759:CSITAE>2.0.CO;2

[5] Garreaud, R.D., 1999. Cold Air Incursions Over Subtropical and Tropical South America: A numerical case study. Mon. Weather Rev. 127(12), 2823–2853. DOI: https://doi.org/10.1175/1520-0493(1999)127<2823:CAIOSA>2.0.CO;2

[6] Vera, C.S., Vigliarolo, P.K., 2000. A Diagnostic Study of Cold-Air Outbreaks over South America. Monthly Weather Review. 128(1), 3–24. DOI: https://doi.org/10.1175/1520-0493(2000)128<0003:ADSOCA>2.0.CO;2

[7] Dos Santos Neto, L.A., Nóbrega, R.S., 2008. Cold Weather in Porto Velho – RO Part I – Climate Characterization and Quantification Using Quantiles. In Proceedings of the XV Brazilian Congress of Meteorology, São Paulo, Brasil, 15–18 July 2008; pp. 1–6.(in Portuguese)

[8] Vianna, L.P., Herdies, D.L., 2018. Case Study of an Extreme Cold Air Invasion Event in July 2013 over the Brazilian Amazon Basin. Revista Brasileira de Meteorologia. 33(1), 27–39. DOI: https://doi.org/10.1590/0102-7786331014 (in Portuguese)

[9] Dos Santos Neto, L.A., Nóbrega, R.S., 2008. Cold Weather in Porto Velho – RO Part II – Possible Correlations Between Pacific Indices and Interannual Variability. In Proceedings of the XV Brazilian Congress of Meteorology , São Paulo, Brasil, 15–18 July 2008; pp. 1–5. (in Portuguese)

[10] Doan, T.M., 2004. Extreme Weather Events and the Vertical Microhabitat of Rain Forest Anurans. Journal of Herpetology. 38(3), 422–425.

[11] Barnet, Y., Jabrane, F., 2015. Eco-dome, a habitat to reduce vulnerability to cold waves in Peru. Campus. 20(20), 69–100. (in Spanish)

[12] Alvares, C.A., Stape, J.L., Sentelhas, P.C., et al., 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 22(6), 711–728. DOI: https://doi.org/10.1127/0941-2948/2013/0507

[13] Xavier, A.C., Scanlon, B.R., King, C.W., et al., 2022. New improved Brazilian daily weather gridded data (1961–2020). International Journal of Climatology. 42(16), 8390–8404. DOI: https://doi.org/10.1002/joc.7731

[14] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly journal of the royal meteorological society. 146(730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803

[15] Huang, B., Liu, C., Banzon, V., et al., 2021. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. Journal of Climate. 34(8), 2923–2939. DOI: https://doi.org/10.1175/JCLI-D-20-0166.1

[16] Bitencourt, D.P., Fuentes, M.V., Maia, P.A., et al., 2016. Frequency, duration, spatial coverage, and intensity of heat waves in Brazil. Revista Brasileira de Meteorologia. 31(4), 506–517. DOI: https://doi.org/10.1590/0102-778631231420150077 (in Portuguese)

[17] Geirinhas, J.L., Trigo, R.M., Libonati, R., et al., 2018. Climatic Characterization of Heat Waves in Brazil. International Journal of Climatology. 38(4), 1760–1776. DOI: https://doi.org/10.1002/joc.5294

[18] Satyamurty, P., Rosa, M.B., 2019. Synoptic climatology of tropical and subtropical South America and adjoining seas as inferred from Geostationary Operational Environmental Satellite imagery. International Journal of Climatology. 40(1), 378–399. DOI: https://doi.org/10.1002/joc.6217

[19] Negri, A.J., Anagnostou, E.N., Adler, R.F., 2000. A 10-yr Climatology of Amazonian Rainfall Derived from Passive Microwave Satellite Observations. Journal of Applied Meteorology. 39(1), 42–56. DOI: https://doi.org/10.1175/1520-0450(2000)039<0042:AYCOAR>2.0.CO;2

[20] Kidd, C., 2001. Satellite rainfall climatology: A review. International Journal of Climatology. 21(9), 1041–1066. DOI: https://doi.org/10.1002/joc.635

[21] Alves, M.P.A., 2016. Winter Cold Fronts in Santa Catarina and Their Relationships with Low-Frequency Climate Variabilities. [Master's Dissertation]. The Federal University of Santa Catarina: Florianópolis, Brazil. pp. 158. (in Portuguese)

[22] Fortune, M., Kousky, V.E., 1983. Two severe freezes in Brazil: Precursors and synoptic evolution. Monthly weather review. 111(1), 181–196. DOI: https://doi.org/10.1175/1520-0493(1983)111<0181:TSFIBP>2.0.CO;2

[23] Krishnamurti, T.N., Tewari, M., Chakraborty, D., et al., 1999. Downstream Amplification: A Possible Precursor to Major Freeze Events over Southeastern Brazil. Weather and Forecasting. 14(2), 242–270. DOI: https://doi.org/10.1175/1520-0434(1999)014<0242:DAAPPT>2.0.CO;2

[24] Oliveira, P.J., Rocha, E.P., Fisch, G., et al., 2004. Effects of a cold snap on weather conditions in the Amazon: a case study. Acta Amazonica. 34(4), 613–619. DOI: https://doi.org/10.1590/S0044-59672004000400013 (in Portuguese)

[25] Escobar, G.C.J., 2007. Synoptic Patterns Associated with Cold Waves in the City of São Paulo. Revista Brasileira de Meteorologia. 22, 241–254. DOI: https://doi.org/10.1590/S0102-77862007000200009 (in Portuguese)

[26] Mendonça, M., Romero, H., 2012. Cold Waves, Oscillation Indices, and Socioenvironmental Impacts of Low-Frequency Climate Variabilities in South America. ACTA Geográfica. 2012, 185–203. DOI: https://doi.org/10.5654/actageo2012.0002.0012 (in Portuguese)

[27] Lucyrio, V., Reboita, M.S., Albieri, M.C.G., 2019. Intense Waves Waves over the Northeast of the State of São Paulo from 1961 to 2017. Revista Brasileira de Climatologia. 25, 571–593. DOI: https://doi.org/10.5380/abclima.v25i0.68125 (in Portuguese)

[28] Alves, M.P.A., Brito, S.R., Boligon, M.R., et al., 2017. The Influence of the Antarctic Oscillation (AAO) on cold waves and occurrence of frosts in the state of Santa Catarina, Brazil. Climate. 5(1), 17. DOI: https://doi.org/10.3390/cli5010017

[29] Dapozzo Ibanez, J.B., Silva Dias, M.A.F.D., 1994. A case Study of Polar Air Penetration into Low Latitudes: July 1988. In Proceedings of the VII Congresso Brasileiro de Meteorologia, Belo Horizonte, Brazil, 1–5 August 1994; pp. 601–606. (in Portuguese)

[30] Firpo, M.A.F., 2008. Climatology of Cold and Heat Waves for Rio Grande do Sul and Their Relation to El Niño and La Niña. [Master's Dissertation]. The Federal University of Pelotas: Pelotas, Brazil. pp. 120. (in Portuguese)

[31] Grimm, A.M., Togatlian, I.M., 2002. Relationship Between El Niño / La Niña Events and the Frequency of Cold and Warm Temperature Extremes in the Southern Cone of South America. In Proceedings of the XII Congresso Brasileiro de Meteorologia, Foz do Iguaçu, Paraná, Brazil, 1–5 September 2002; pp. 1192–1197. (in Portuguese)

[32] Firpo, M.A.F., Sansigolo, C.A.E., Assis, S.V., 2012. Climatology and Seasonal Variability of the Number of Heat Waves and Cold Waves in Rio Grande do Sul Associated with ENSO. Revista Brasileira de Meteorologia. 27, 95–106. DOI: https://doi.org/10.1590/S0102-77862012000100010 (in Portuguese)

[33] Thompson, D.W.J., Wallace, J.M., 2000. Annular Modes in the Extratropical Circulation. Part I: Month-to-month variability. Journal of climate. 13(5), 1000–1016. DOI: https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2

[34] Justino, F.B., Peltier, R., 2008. Climate anomalies induced by the Artic and Antartics Oscillations: Glacial Maximum and presente-day perpectives. Journal of Climate. 21(3), 459–475. DOI: https://doi.org/10.1175/2007JCLI1703.1

[35] Conti, G.N., 2002. Rainfall Estimation Using Remote Sensing Techniques: A Case Study for the State of Rio Grande do Sul. [Master's Dissertation]. The Federal University of Rio Grande do Sul: Porto Alegre, Brazil. pp. 188. (in Portuguese)

[36] Parmenter, F., 1976. A Southern Hemisphere cold front passage at the Equator. Bulletin of American Meteorological Society. 57(12), 1435–1440. DOI: https://doi.org/10.1175/1520-0477(1976)057<1435:ASHCFP>2.0.CO;2

[37] Girardi, C., 1983. The Pit of the Andes. In Proceedings of the First International Congress on Southern Hemisphere Meteorology, São José dos Campos, São Paulo, Brazil, 31 July–6 August 1983; pp. 226–229. (in Spanish)

[38] Pezza, A.B., Ambrizzi, T., 2005. Cold waves in South America and freezing temperatures in Sao Paulo: Historical background (1888-2003) and cases studies of cyclone and anticyclone tracks. Revista Brasileira de Meteorologia. 20(1), 141–158. (in Portuguese)

[39] Lejena¨s, H., 1984. Characteristics of Southern Hemisphere blocking as determined from a long time series of observational data. Quarterly Journal of the Royal Meteorological Society. 110(466), 967–979. DOI: https://doi.org/10.1002/qj.49711046610

[40] Seluchi, M.E., 2022. Frosts and Cold Outbreaks. In: Ferreira, N.J., Cavalcanti, I.F.A. (eds.). Active Weather Systems in Brazil. 2nd ed. Oficina de Textos: São Paulo, Brazil. pp. 24–37.(in Portuguese)

[41] Kayano, M.T., Andreoli, R.V., Souza, R.A.F., et al., 2017. Spatiotemporal variability modes of surface air temperature in South America during the 1951–2010 period: ENSO and non-ENSO components. International Journal of Climatology. 37, 1–13. DOI: https://doi.org/10.1002/joc.4972

Downloads

How to Cite

Nadja Núcia Marinho Batista, Marcelo Barbio Rosa, María Cleofé Valverde, Mary Toshie Kayano, & Nelson Jesuz Ferreira. (2025). “Friagem” Events in the Brazilian Amazon, Changes and Variability in Its Climatological Patterns. Journal of Atmospheric Science Research, 8(3), 93–109. https://doi.org/10.30564/jasr.v8i3.11069

Issue

Article Type

Article