-
771
-
433
-
393
-
384
-
357
Multichannel Singular Spectrum Analysis of Ozone Variability across Brazilian Biomes: Trends, Seasonality, and Forecasting
DOI:
https://doi.org/10.30564/jasr.v8i4.12259Abstract
This study examines the spatio-temporal variability of Total Column Ozone (TCO) across three major Brazilian biomes—the Cerrado, Pantanal, and Atlantic Forest—from 2005 to 2020 using Multichannel Singular Spectrum Analysis (MSSA) and its forecasting extension, the SSA–Linear Recurrent Formula (SSA–LRF). The MSSA decomposition revealed three dominant and physically consistent structures: a long-term declining trend, a synchronous seasonal cycle, and an interannual component linked to ENSO (El Niño–Southern Oscillation) variability. All biomes exhibited a persistent decrease in ozone concentrations, with the strongest declines observed in the Cerrado (−1.44 DU yr⁻¹) and Pantanal (−1.20 DU yr⁻¹). Seasonal oscillations, peaking from August to October, displayed biome-specific amplitudes ranging from 3.5 to 6.8 DU, reflecting differences in fire activity, rainfall regimes, and vegetation cover. High inter-biome correlations (r = 0.85–0.95) and zero-month lags indicate a coherent and synchronous ozone response across tropical South America. The interannual mode showed significant association with the Niño 3.4 index, confirming that ENSO-driven climate anomalies modulate ozone variability, particularly in the Pantanal. Forecasts generated with SSA–LRF demonstrated high predictive accuracy (RMSE ≈ 1.15 DU; r ≈ 0.98, p < 0.01), effectively preserving the observed trend and seasonal structure. These results highlight the robustness of the MSSA–LRF framework for diagnosing and forecasting ozone variability in data-limited tropical regions, offering a reliable, non-parametric tool to support environmental monitoring, air-quality assessments, and climate-impact studies.
Keywords:
Ozone Variability; Multichannel Singular Spectrum Analysis; SSA–LRF Forecasting; Total Column Ozone; Brazilian Biomes; ENSO; Seasonal Cycle; Trend AnalysisReferences
[1] Elsner, J.B., Tsonis, A.A., 1996. Singular Spectrum Analysis. Springer:Boston, MA, USA. DOI: https://doi.org/10.1007/978-1-4757-2514-8
[2] Allen, M.R., Smith, L.A., 1996. Monte Carlo SSA: Detecting Irregular Oscillations in the Presence of Colored Noise. Journal of Climate. 9(12), 3373–3404. DOI: https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2
[3] Ghil, M., Allen, M.R., Dettinger, M.D., et al., 2002. Advanced Spectral Methods for Climatic Time Series. Reviews of Geophysics. 40(1). DOI: https://doi.org/10.1029/2000RG000092
[4] Sanei, S., Ghodsi, M., Hassani, H., 2011. An Adaptive Singular Spectrum Analysis Approach to Murmur Detection from Heart Sounds. Medical Engineering & Physics. 33(3), 362–367. DOI: https://doi.org/10.1016/j.medengphy.2010.11.004
[5] Yiou, P., Baert, E., Loutre, M.F., 1996. Spectral Analysis of Climate Data. Surveys in Geophysics. 17(6), 619–663. DOI: https://doi.org/10.1007/BF01931784
[6] Golyandina, N., Nekrutkin, V., Zhigljavsky, A., 2001. Analysis of Time Series Structure: SSA and Related Techniques, C&H/CRC Monographs on Statistics & Applied Probability. Chapman and Hall/CRC: London, UK. DOI: https://doi.org/10.1201/9781420035841
[7] Hassani, H., 2021. Singular Spectrum Analysis: Methodology and Comparison. Journal of Data Science. 5(2), 239–257. DOI: https://doi.org/10.6339/JDS.2007.05(2).396
[8] Palacios, R., Marques, J., Prado, M., et al., 2016. Singular Spectrum and Wavelet Analysis on Time Series of Optical Depth of Aerosols in the Pantanal of Brazil. Revista Brasileira de Meteorologia. 31(4), 527–537. DOI: https://doi.org/10.1590/0102-778631231420150104 (in Portuguese)
[9] De Souza, A., Da Silva Palácios, R., Nassarden, D.C.S., et al., 2025. Spectral Decomposition and Temporal Dynamics of CO and O₃ in Campo Grande, Brazil: A Singular Spectrum Analysis Approach. Air Quality, Atmosphere & Health. DOI: https://doi.org/10.1007/s11869-025-01857-7
[10] Hassani, H., Thomakos, D., 2010. A Review on Singular Spectrum Analysis for Economic and Financial Time Series. Statistics and Its Interface. 3(3), 377–397. DOI: https://doi.org/10.4310/SII.2010.v3.n3.a11
[11] Hassani, H., Zhigljavsky, A., 2009. Singular Spectrum Analysis: Methodology and Application to Economics Data. Journal of Systems Science and Complexity. 22(3), 372–394. DOI: https://doi.org/10.1007/s11424-009-9171-9
[12] Yılmaz, E., Ahmed, S.E., Aydın, D., 2020. A-Spline Regression for Fitting a Nonparametric Regression Function with Censored Data. Stats. 3(2), 120–136. DOI: https://doi.org/10.3390/stats3020011
[13] Hassani, H., Mahmoudvand, R., 2013. Multivariate Singular Spectrum Analysis: A General View and New Vector Forecasting Approach. International Journal of Energy and Statistics. 01(01), 55–83. DOI: https://doi.org/10.1142/S2335680413500051
[14] Movahedifar, M., Hassani, H., Yarmohammadi, M., et al., 2022. A Robust Approach for Outlier Imputation: Singular Spectrum Decomposition. Communications in Statistics: Case Studies, Data Analysis and Applications. 8(2), 234–250. DOI: https://doi.org/10.1080/23737484.2021.2017810
[15] Abdollahzade, M., Miranian, A., Hassani, H., et al., 2015. A New Hybrid Enhanced Local Linear Neuro-Fuzzy Model Based on the Optimized Singular Spectrum Analysis and Its Application for Nonlinear and Chaotic Time Series Forecasting. Information Sciences. 295, 107–125. DOI: https://doi.org/10.1016/j.ins.2014.09.002
[16] Liu, S., Huang, S., Xie, Y., et al., 2019. Identification of the Non-stationarity of Floods: Changing Patterns, Causes, and Implications. Water Resources Management. 33(3), 939–953. DOI: https://doi.org/10.1007/s11269-018-2150-y
[17] Fajar, M., 2017. Inflation Forecasting by Hybrid Singular Spectrum Analysis. MPRA Paper No. 105100. Available from: https://mpra.ub.uni-muenchen.de/105100/
[18] De Carvalho, M., Rodrigues, P.C., Rua, A., 2012. Tracking the US Business Cycle with a Singular Spectrum Analysis. Economics Letters. 114(1), 32–35. DOI: https://doi.org/10.1016/j.econlet.2011.09.007
[19] Trovero, M., Leonard, M., Elsheimer, B., 2017. Automatic Singular Spectrum Analysis and Forecasting. SAS Institute Inc: Cary, NC, USA. Available from: https://kdd-milets.github.io/milets2017/paper/MiLeTS17_paper_15.pdf
[20] Fajar, M., 2018. Improving the Forecasting Accuracy by Hybrid Method Singular Spectrum Analysis–Multilayer Perceptron Neural Networks. DOI: https://doi.org/10.13140/RG.2.2.34999.01443
[21] Hassani, H., Mahmoudvand, R., Zokaei, M., 2011. Separability and Window Length in Singular Spectrum Analysis. Comptes Rendus. Mathématique. 349(17–18), 987–990. DOI: https://doi.org/10.1016/j.crma.2011.07.012
[22] Mahmoudvand, R., Konstantinides, D., Rodrigues, P.C., 2017. Forecasting Mortality Rate by Multivariate Singular Spectrum Analysis. Applied Stochastic Models in Business and Industry. 33(6), 717–732. DOI: https://doi.org/10.1002/asmb.2274
[23] Cairns, A.J.G., Blake, D., Dowd, K., et al., 2009. A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States. North American Actuarial Journal. 13(1), 1–35. DOI: https://doi.org/10.1080/10920277.2009.10597538
[24] Peng, C.-K., Costa, M., Goldberger, A.L., 2009. Adaptive Data Analysis of Complex Fluctuations in Physiologic Time Series. Advances in Adaptive Data Analysis. 01(01), 61–70. DOI: https://doi.org/10.1142/S1793536909000035
[25] Church, J.A., White, N.J., 2011. Sea-Level Rise from the Late 19th to the Early 21st Century. Surveys in Geophysics. 32(4–5), 585–602. DOI: https://doi.org/10.1007/s10712-011-9119-1
[26] Geng, D., Zhang, Yongkang, Zhang, Yunlong, et al., 2025. A Hybrid Model Based on CapSA-VMD-ResNet-GRU-Attention Mechanism for Ultra-Short-Term and Short-Term Wind Speed Prediction. Renewable Energy. 240, 122191. DOI: https://doi.org/10.1016/j.renene.2024.122191
[27] Zhu, Y., Zhang, R.-H., 2018. Scaling Wind Stirring Effects in an Oceanic Bulk Mixed Layer Model with Application to an OGCM of the Tropical Pacific. Climate Dynamics. 51(5–6), 1927–1946. DOI: https://doi.org/10.1007/s00382-017-3990-5
[28] Menezes, M.L.D., Castro Souza, R., Moreira Pessanha, J.F., 2015. Electricity Consumption Forecasting Using Singular Spectrum Analysis. DYNA. 82(190), 138–146. DOI: https://doi.org/10.15446/dyna.v82n190.43652
[29] Golyandina, N., Stepanov, D., 2005. SSA-Based Approaches to Analysis and Forecasting of Multidimensional Time Series. In Proceedings of the 5th St. Petersburg Workshop on Simulation, St. Petersburg, Russia, June 26–July 2 2005; pp. 293–298. Available from: https://gistatgroup.com/gus/mssa2.pdf
[30] Usevich, K., Golyandina, N., 2010. 2D-Extension of Singular Spectrum Analysis: Algorithm and Elements of Theory. In: Olshevsky, V., Tyrtyshnikov, E. (Eds.). Matrix Methods: Theory, Algorithms and Applications. World Scientific Publishing: Singapore. pp. 449–474.
[31] Wickham, H., 2011. The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software. 40(1). DOI: https://doi.org/10.18637/jss.v040.i01
[32] Rodrigues, P.C., Awe, O.O., Pimentel, J.S., et al., 2020. Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks. Stats. 3(2), 137–157. DOI: https://doi.org/10.3390/stats3020012
[33] De Klerk, J., 2025. Modelling Time Series Structure, Identifying Outliers and Forecasting ESKOM Electricity Production Data Using Singular Spectrum Analysis. Studies in Economics and Econometrics. 49(1), 34–52. DOI: https://doi.org/10.1080/03796205.2025.2458853
[34] Stock, J.H., Watson, M.W., 1999. Chapter 1 Business Cycle Fluctuations in Us Macroeconomic Time Series. In: Handbook of Macroeconomics. Elsevier: London, UK. pp. 3–64. DOI: https://doi.org/10.1016/S1574-0048(99)01004-6
[35] Buchstaber, V.M., 1994. Time Series Analysis and Grassmannians. American Mathematical Society Translations. 162, 1–17. Available from: https://homepage.mi-ras.ru/~buchstab/download/AMSTransl2.1994.162.1.pdf
[36] Gould, P.G., Koehler, A.B., Ord, J.K., et al., 2008. Forecasting Time Series with Multiple Seasonal Patterns. European Journal of Operational Research. 191(1), 207–222. DOI: https://doi.org/10.1016/j.ejor.2007.08.024
[37] Taylor, J.W., 2003. Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing. Journal of the Operational Research Society. 54(8), 799–805. DOI: https://doi.org/10.1057/palgrave.jors.2601589
[38] Perez, F.L., 2024. SSA—Singular Spectrum Analysis. Available from: http://leg.ufpr.br/~lucambio/STemporais/SSA0.html (cited 7 July 2025).
[39] Cooper, O.R., Parrish, D.D., Ziemke, J., et al., 2014. Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review. Elementa: Science of the Anthropocene. 2, 000029. DOI: https://doi.org/10.12952/journal.elementa.000029
[40] Monks, P.S., Archibald, A.T., Colette, A., et al., 2015. Tropospheric Ozone and Its Precursors from the Urban to the Global Scale from Air Quality to Short-Lived Climate Forcer. Atmospheric Chemistry and Physics. 15(15), 8889–8973. DOI: https://doi.org/10.5194/acp-15-8889-2015
[41] Artaxo, P., Rizzo, L.V., Brito, J.F., et al., 2013. Atmospheric Aerosols in Amazonia and Land Use Change: From Natural Biogenic to Biomass Burning Conditions. Faraday Discussions. 165, 203. DOI: https://doi.org/10.1039/c3fd00052d
[42] Songa, M., De Souza, A., De Oliveira-Júnior, J.F., et al., 2025. Intraseasonal and Interannual Variability of the Total Ozone Column (TCO) in Brazilian Biomes: An Analysis of the Multibiome Trend in Mato Grosso Do Sul - Brazil. Journal of Atmospheric and Solar-Terrestrial Physics. 277, 106651. DOI: https://doi.org/10.1016/j.jastp.2025.106651
[43] Kim, J.H., Newchurch, M.J., 1998. Biomass‐Burning Influence on Tropospheric Ozone Over New Guinea and South America. Journal of Geophysical Research: Atmospheres. 103(D1), 1455–1461. DOI: https://doi.org/10.1029/97JD02294
[44] Marengo, J.A., Espinoza, J.-C., Fu, R., et al., 2024. Long-Term Variability, Extremes and Changes in Temperature and Hydrometeorology in the Amazon Region: A Review. Acta Amazonica. 54(spe1), e54es22098. DOI: https://doi.org/10.1590/1809-4392202200980
[45] Morillas, C., Alvarez, S., Pires, J.C.M., et al., 2024. Impact of the Implementation of Madrid’s Low Emission Zone on NO2 Concentration Using Sentinel-5P/TROPOMI Data. Atmospheric Environment. 320, 120326. DOI: https://doi.org/10.1016/j.atmosenv.2024.120326
[46] Golyandina, N., Zhigljavsky, A., 2020. Singular Spectrum Analysis for Time Series, SpringerBriefs in Statistics. Springer: Berlin, Germany. DOI: https://doi.org/10.1007/978-3-662-62436-4
[47] Golyandina, N., Korobeynikov, A., Shlemov, A., et al., 2015. Multivariate and 2D Extensions of Singular Spectrum Analysis with the Rssa Package. Journal of Statistical Software. 67(2). DOI: https://doi.org/10.18637/jss.v067.i02
[48] Keller, N., Van Meerveld, I., Philipson, C.D., et al., 2023. Does Heterogeneity in Regenerating Secondary Forests Affect Mean Throughfall? Journal of Hydrology. 625, 130083. DOI: https://doi.org/10.1016/j.jhydrol.2023.130083
[49] Zotov, L., Sidorenkov, N.S., Bizouard, Ch., et al., 2017. Multichannel Singular Spectrum Analysis of the Axial Atmospheric Angular Momentum. Geodesy and Geodynamics. 8(6), 433–442. DOI: https://doi.org/10.1016/j.geog.2017.02.010
[50] Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. Journal of Hydrology. 259(1–4), 254–271. DOI: https://doi.org/10.1016/S0022-1694(01)00594-7
[51] Mann, H.B., 1945. Nonparametric Tests Against Trend. Econometrica. 13(3), 245. DOI: https://doi.org/10.2307/1907187
[52] Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association. 63(324), 1379–1389. DOI: https://doi.org/10.1080/01621459.1968.10480934
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Amaury de Souza, Raquel Soares Casaes Nunes, José Francisco de Oliveira Junior, Ivana Pobocikova, Sianny Vanessa da Silva Freitas, Kelvy Rosalvo Alencar Cardoso, Carolyne May Mutambi Songa

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.




Amaury de Souza