-
694
-
405
-
345
-
334
-
326
Spectral Transmission Properties (0.35–25 µm) of Some Anthropogenic and Natural Atmospheric Aerosol Constituents
DOI:
https://doi.org/10.30564/jasr.v9i1.12807Abstract
Atmospheric aerosols can have wide-ranging effects on the Earth’s atmosphere, hydrosphere, and biosphere. To help improve our understanding of these effects, we have conducted spectral reflectance and transmission properties of a suite of anthropogenic and natural aerosols across a wide wavelength range (0.35–25 microns). Our sample suite included rock and mineral dusts, sulfates and nitrates, ocean water precipitates, and a variety of carbonaceous and organic materials. These data are useful to identify species that may be present in the atmosphere from spectroscopic measurements. Different aerosol/dust species can have unique spectroscopic properties in terms of diagnostic absorption bands and spectral shapes, and diagnostic absorption bands, can be present in multiple wavelength regions, including within atmospheric transmission windows. The composition of aerosol species can be determined with varying degrees of specificity from their spectroscopic properties. Increases in aerosol abundance, which may lead to saturation of strong absorption bands can be partially compensated for by accompanying strengthening of “secondary” absorption bands that are normally weak. Grain size variations mostly affect absorption/transmission intensities, but do not lead to the appearance of any new absorption bands. Empirical laboratory studies, where grain size and concentration are varied, can provide information that can be used to determine atmospheric aerosol composition and to help constrain measurements and models of atmospheric optical depth.
Keywords:
Atmospheric Dust; Aerosols; Spectroscopy; Transmission; ReflectanceReferences
[1] Saito, M., Yang, P., 2021. Advanced Bulk Optical Models Linking the Backscattering and Microphysical Properties of Mineral Dust Aerosol. Geophysical Research Letters. 48(17), e2021GL095121. DOI: https://doi.org/10.1029/2021GL095121
[2] Ito, A., Adebiyi, A.A., Huang, Y., et al., 2021. Less atmospheric radiative heating by dust due to the synergy of coarser size and aspherical shape. Atmospheric Chemistry and Physics. 21(22), 16869–16891. DOI: https://doi.org/10.5194/acp-21-16869-2021
[3] Saito, M., Yang, P., Ding, J., et al., 2021. A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. Journal of the Atmospheric Sciences. 78(7), 2089–2111. DOI: https://doi.org/10.1175/JAS-D-20-0338.1
[4] Szczepanik, D.M., Stachlewska, I.S., Tetoni, E., et al., 2021. Properties of Saharan Dust Versus Local Urban Dust—A Case Study. Earth and Space Science. 8(12), e2021EA001816. DOI: https://doi.org/10.1029/2021EA001816
[5] Yang, X., Zhao, C., Yang, Y., et al., 2021. Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia. Atmospheric Chemistry and Physics. 21(5), 3803–3825. DOI: https://doi.org/10.5194/acp-21-3803-2021
[6] Zubko, E., Shmirko, K., Pavlov, A., et al., 2021. Active remote sensing of atmospheric dust using relationships between their depolarization ratios and reflectivity. Optics Letters. 46(10), 2352–2355. DOI: https://doi.org/10.1364/OL.426584
[7] Huang, Y., Kok, J.F., Saito, M., et al., 2023. Single-scattering properties of ellipsoidal dust aerosols constrained by measured dust shape distributions. Atmospheric Chemistry and Physics. 23(4), 2557–2577. DOI: https://doi.org/10.5194/acp-23-2557-2023
[8] Castellanos, P., Colarco, P., Espinosa, W.R., et al., 2024. Mineral dust optical properties for remote sensing and global modeling: A review. Remote Sensing of Environment. 303, 113982. DOI: https://doi.org/10.1016/j.rse.2023.113982
[9] Harrison, A.D., O'Sullivan, D., Adams, M.P., et al., 2022. The ice-nucleating activity of African mineral dust in the Caribbean boundary layer. Atmospheric Chemistry and Physics. 22(14), 9663–9680. DOI: https://doi.org/10.5194/acp-22-9663-2022
[10] Nickovic, S., Cvetkovic, B., Petković, S., et al., 2021. Cloud icing by mineral dust and impacts to aviation safety. Scientific Reports. 11(1), 6411. DOI: https://doi.org/10.1038/s41598-021-85566-y
[11] Chen, J., Wu, Z., Chen, J., et al., 2021. Size-resolved atmospheric ice-nucleating particles during East Asian dust events. Atmospheric Chemistry and Physics. 21(5), 3491–3506. DOI: https://doi.org/10.5194/acp-21-3491-2021
[12] Casquero-Vera, J.A., Pérez-Ramírez, D., Lyamani, H., et al., 2023. Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas. Atmospheric Chemistry and Physics. 23(24), 15795–15814. DOI: https://doi.org/10.5194/acp-23-15795-2023
[13] Spyrou, C., Fountoulakis, I., Solomos, S., et al., 2025. Implications of dust minerals on radiative transfer at regional scale, using the METAL-WRF model. Atmospheric Measurement Techniques. 18(24), 7717–7734. DOI: https://doi.org/10.5194/amt-18-7717-2025
[14] López-Cayuela, M.-Á., Herreras-Giralda, M., Córdoba-Jabonero, C., et al., 2021. Vertical assessment of the mineral dust optical and microphysical properties as retrieved from the synergy between polarized micro-pulse lidar and sun/sky photometer observations using GRASP code. Atmospheric Research. 264, 105818. DOI: https://doi.org/10.1016/j.atmosres.2021.105818
[15] Zhang, Y., Yu, F., Luo, G., et al., 2021. Impacts of long-range-transported mineral dust on summertime convective cloud and precipitation: A case study over the Taiwan region. Atmospheric Chemistry and Physics. 21(23), 17433–17451. DOI: https://doi.org/10.5194/acp-21-17433-2021
[16] Twohy, C.H., Toohey, D.W., Levin, E.J.T., et al., 2021. Biomass Burning Smoke and Its Influence on Clouds Over the Western U.S. Geophysical Research Letters. 48(15), e2021GL094224. DOI: https://doi.org/10.1029/2021GL094224
[17] Barr, S.L., Wyld, B., McQuaid, J.B., et al., 2023. Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles. Science Advances. 9(33), eadg3708. DOI: https://doi.org/10.1126/sciadv.adg3708
[18] Kawai, K., Matsui, H., 2025. Contributions of Dust Source Regions to Ice Nucleating Particles in Mixed-Phase Clouds Simulated with a Global Climate–Aerosol Model. Journal of Climate. 38(18), 4925–4939. DOI: https://doi.org/10.1175/JCLI-D-24-0696.1
[19] Tian, L., Chen, L., Zhang, P., et al., 2021. Estimating radiative forcing efficiency of dust aerosol based on direct satellite observations: case studies over the Sahara and Taklimakan Desert. Atmospheric Chemistry and Physics. 21(15), 11669–11687. DOI: https://doi.org/10.5194/acp-21-11669-2021
[20] Wang, J., Su, S., Yin, Z., et al., 2022. Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation. Remote Sensing. 14(3), 660. DOI: https://doi.org/10.3390/rs14030660
[21] Ssouaby, S., Naim, H., Tahiri, A., et al., 2021. Sensitization Towards Aerosol Optical Properties And Radiative Forcing, Real Case In Morocco. E3S Web of Conferences. 319, 02027. DOI: https://doi.org/10.1051/e3sconf/202131902027
[22] Tian, P., Yu, Z., Cui, C., et al., 2023. Atmospheric aerosol size distribution impacts radiative effects over the Himalayas via modulating aerosol single-scattering albedo. npj Climate and Atmospheric Science. 6(1), 54. DOI: https://doi.org/10.1038/s41612-023-00368-5
[23] Li, L., Mahowald, N.M., Miller, R.L., et al., 2021. Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmospheric Chemistry and Physics. 21(5), 3973–4005. DOI: https://doi.org/10.5194/acp-21-3973-2021
[24] Li, J., Carlson, B.E., Yung, Y.L., et al., 2022. Scattering and absorbing aerosols in the climate system. Nature Reviews Earth & Environment. 3(6), 363–379. DOI: https://doi.org/10.1038/s43017-022-00296-7
[25] Kok, J.F., Storelvmo, T., Karydis, V.A., et al., 2023. Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment. 4(2), 71–86. DOI: https://doi.org/10.1038/s43017-022-00379-5
[26] Gong, C., Tian, H., Liao, H., et al., 2024. Global net climate effects of anthropogenic reactive nitrogen. Nature. 632(8025), 557–563. DOI: https://doi.org/10.1038/s41586-024-07714-4
[27] Meng, L., Tu, L., Luo, J., et al., 2025. Anthropogenic Activities Increase the Proportion of Soot in Black Carbon Particles and Thereby Intensify Atmospheric Radiative Forcing. Environmental Science & Technology. 59(29), 15159–15169. DOI: https://doi.org/10.1021/acs.est.5c02892
[28] Parajuli, S.P., Jin, Q., Francis, D., 2022. Editorial: Atmospheric dust: How it affects climate, environment and life on Earth? Frontiers in Environmental Science. 10, 1058052. DOI: https://doi.org/10.3389/fenvs.2022.1058052
[29] Dee, S., Bailey, A., Conroy, J.L., et al., 2023. Water isotopes, climate variability, and the hydrological cycle: recent advances and new frontiers. Environmental Research: Climate. 2(2), 022002. DOI: https://doi.org/10.1088/2752-5295/accbe1
[30] Kaushal, S.S., Likens, G.E., Mayer, P.M., et al., 2023. The anthropogenic salt cycle. Nature Reviews Earth & Environment. 4(11), 770–784. DOI: https://doi.org/10.1038/s43017-023-00485-y
[31] Kok, J.F., Adebiyi, A.A., Albani, S., et al., 2021. Contribution of the world's main dust source regions to the global cycle of desert dust. Atmospheric Chemistry and Physics. 21(10), 8169–8193. DOI: https://doi.org/10.5194/acp-21-8169-2021
[32] Gibson, L.D., Levin, E.J.T., Emerson, E., et al., 2025. Measurement report: An investigation of the spatiotemporal variability in aerosols in the mountainous terrain of the upper Colorado River basin using SAIL-Net. Atmospheric Chemistry and Physics. 25(4), 2745–2762. DOI: https://doi.org/10.5194/acp-25-2745-2025
[33] Zan, J., Maher, B.A., Fang, X., et al., 2025. Global dust impacts on biogeochemical cycles and climate. Nature Reviews Earth & Environment. 6(12), 789–807. DOI: https://doi.org/10.1038/s43017-025-00734-2
[34] Du, S., Ariful Islam, G.M., Xiang, R., et al., 2021. The Dust Deposition Process and Biogeochemical Impacts in the Northern South China Sea. Asia-Pacific Journal of Atmospheric Sciences. 57(1), 77–87. DOI: https://doi.org/10.1007/s13143-019-00171-4
[35] Guieu, C., Ridame, C., 2022. Impact of Atmospheric Deposition on Marine Chemistry and Biogeochemistry. In: Dulac, F., Sauvage, S., Hamonou, E. (Eds.). Atmospheric Chemistry in the Mediterranean Region. Springer International Publishing: Cham, Switzerland. pp. 487–510. DOI: https://doi.org/10.1007/978-3-030-82385-6_23
[36] Hamza, W., 2021. Dust Storms and Its Benefits to the Marine Life of the Arabian Gulf. In: Jawad, L.A. (Ed.). The Arabian Seas: Biodiversity, Environmental Challenges and Conservation Measures. Springer International Publishing, Cham, Switzerland. pp. 141–160. DOI: https://doi.org/10.1007/978-3-030-51506-5_7
[37] Ventura, A., Simões, E.F.C., Almeida, A.S., et al., 2021. Deposition of Aerosols onto Upper Ocean and Their Impacts on Marine Biota. Atmosphere. 12(6), 684. DOI: https://doi.org/10.3390/atmos12060684
[38] Lin, W., Yu, X., Xu, D., et al., 2021. Effect of Dust Deposition on Chlorophyll Concentration Estimation in Urban Plants from Reflectance and Vegetation Indexes. Remote Sensing. 13(18), 3570. DOI: https://doi.org/10.3390/rs13183570
[39] Zhai, H., Yao, J., Wang, G., et al., 2022. Study of the Effect of Vegetation on Reducing Atmospheric Pollution Particles. Remote Sensing. 14(5), 1255. DOI: https://doi.org/10.3390/rs14051255
[40] Soheili, F., Woodward, S., Abdul-Hamid, H., et al., 2023. The Effect of Dust Deposition on the Morphology and Physiology of Tree Foliage. Water, Air, & Soil Pollution. 234(6), 339. DOI: https://doi.org/10.1007/s11270-023-06349-x
[41] Pandey, S.P., Pokharel, A.K., Peng, Z., 2025. Reoccurrence of Dust Storms in South Asia and Their Implications for Vegetation Health. Integrative Conservation. 4(3), 362–380. DOI: https://doi.org/10.1002/inc3.70036
[42] Tong, D.Q., Gill, T.E., Sprigg, W.A., et al., 2023. Health and Safety Effects of Airborne Soil Dust in the Americas and Beyond. Reviews of Geophysics. 61(2), e2021RG000763. DOI: https://doi.org/10.1029/2021RG000763
[43] Wang, X., Cai, D., Li, D., et al., 2021. Dust deposition and its significance to soil nutrients in the Otindag Desert, China. Journal of Arid Environments. 194, 104612. DOI: https://doi.org/10.1016/j.jaridenv.2021.104612
[44] Liu, Y., Wang, P., Gojenko, B., et al., 2021. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution. 291, 118209. DOI: https://doi.org/10.1016/j.envpol.2021.118209
[45] Yousefi Kebriya, A., Nadi, M., Ghanbari Parmehr, E., et al., 2025. Assessment of Some Environmental Stresses in the Shadegan Wetland: Analysis of Satellite Data, Water Quality Indicators, and Dust Storm Pathways. Iranica Journal of Energy and Environment. 16(2), 372–388. DOI: https://doi.org/10.5829/ijee.2025.16.02.17
[46] Middleton, N., 2024. Impacts of sand and dust storms on food production. Environmental Research: Food Systems. 1(2), 022003. DOI: https://doi.org/10.1088/2976-601X/ad63ac
[47] Tang, F.H.M., Wyckhuys, K.A.G., Li, Z., et al., 2025. Transboundary impacts of pesticide use in food production. Nature Reviews Earth & Environment. 6(6), 383–400. DOI: https://doi.org/10.1038/s43017-025-00673-y
[48] Qin, Y., Zhou, M., Hao, Y., et al., 2024. Amplified positive effects on air quality, health, and renewable energy under China's carbon neutral target. Nature Geoscience. 17(5), 411–418. DOI: https://doi.org/10.1038/s41561-024-01425-1
[49] Arfin, T., Pillai, A.M., Mathew, N., et al., 2023. An overview of atmospheric aerosol and their effects on human health. Environmental Science and Pollution Research. 30(60), 125347–125369. DOI: https://doi.org/10.1007/s11356-023-29652-w
[50] Wong, C.M., Tsang, H., Lai, H.K., et al., 2016. Cancer Mortality Risks from Long-term Exposure to Ambient Fine Particle. Cancer Epidemiology, Biomarkers & Prevention. 25(5), 839–845. DOI: https://doi.org/10.1158/1055-9965.EPI-15-0626
[51] Darvishi Boloorani, A., Soleimani, Z., Teymouri, P., et al., 2023. Microbiology of Sand and Dust Storms and the Effects on Human Health in Iran and Other Persian Gulf Countries. In: Al-Dousari, A., Hashmi, M.Z. (Eds.). Dust and Health, Emerging Contaminants and Associated Treatment Technologies. Springer International Publishing: Cham, Switzerland. pp. 157–186. DOI: https://doi.org/10.1007/978-3-031-21209-3_9
[52] Proestakis, E, 2025. Tacking the effects of atmospheric dust hazard on human health. Field Action Science Reports. 27, 76–79.
[53] Proestakis, E., Papachristopoulou, K., Georgiou, T., et al., 2025. Atmospheric dust and air quality over large-cities and megacities of the world. Atmospheric Chemistry and Physics. 25(21), 14777–14823. DOI: https://doi.org/10.5194/acp-25-14777-2025
[54] Waquet, F., Peers, F., Ducos, F., et al., 2013. Global analysis of aerosol properties above clouds. Geophysical Research Letters. 40(21), 5809–5814. DOI: https://doi.org/10.1002/2013GL057482
[55] Schiferl, L.D., Heald, C.L., Nowak, J.B., et al., 2014. An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Journal of Geophysical Research: Atmospheres. 119(4), 1883–1902. DOI: https://doi.org/10.1002/2013JD020765
[56] Darvishi Boloorani, A., Soleimani, M., Papi, R., et al., 2025. Global map of characterized dust sources using multisource remote sensing data. Scientific Reports. 15(1), 29805. DOI: https://doi.org/10.1038/s41598-025-14794-3
[57] Froyd, K.D., Yu, P., Schill, G.P., et al., 2022. Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements. Nature Geoscience. 15(3), 177–183. DOI: https://doi.org/10.1038/s41561-022-00901-w
[58] Green, R., 2024. Closing knowledge gaps with eighty billion spectra of the Earth system collected by EMIT from the International Space Station. In Proceedings of the 45th COSPAR Scientific Assembly, Busan, South Korea, 13–21 July 2024; pp. 10–24.
[59] Green, R.O., Mahowald, N., Thompson, D.R., et al., 2023. Performance and Early Results from the Earth Surface Mineral Dust Source Investigation (EMIT) Imaging Spectroscopy Mission. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4 March 2023; pp. 1–10. DOI: https://doi.org/10.1109/AERO55745.2023.10115851
[60] Dykema, J.A., Keith, D.W., Keutsch, F.N., 2016. Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment. Geophysical Research Letters. 43(14), 7758–7766. DOI: https://doi.org/10.1002/2016GL069258
[61] Conel, J.E., 1969. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums. Journal of Geophysical Research. 74(6), 1614–1634. DOI: https://doi.org/10.1029/JB074i006p01614
[62] Greenberg, J.M., 1972. Absorption and emission of radiation by nonspherical particles. Journal of Colloid and Interface Science. 39(3), 513–519. DOI: https://doi.org/10.1016/0021-9797(72)90060-4
[63] Hunt, G.R., Logan, L.M., 1972. Variation of Single Particle Mid-Infrared Emission Spectrum with Particle Size. Applied Optics. 11(1), 142. DOI: https://doi.org/10.1364/AO.11.000142
[64] Toon, O.B., Pollack, J.B., 1976. A Global Average Model of Atmospheric Aerosols for Radiative Transfer Calculations. Journal of Applied Meteorology. 15(3), 225–246. DOI: https://doi.org/10.1175/1520-0450(1976)015%253C0225:AGAMOA%253E2.0.CO;2
[65] Sand, M., Iversen, T., Bohlinger, P., et al., 2015. A Standardized Global Climate Model Study Showing Unique Properties for the Climate Response to Black Carbon Aerosols. Journal of Climate. 28(6), 2512–2526. DOI: https://doi.org/10.1175/JCLI-D-14-00050.1
[66] Dubovik, O., Holben, B., Eck, T.F., et al., 2002. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of the Atmospheric Sciences. 59(3), 590–608. DOI: https://doi.org/10.1175/1520-0469(2002)059%253C0590:VOAAOP%253E2.0.CO;2
[67] Sinyuk, A., Torres, O., Dubovik, O., 2003. Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust. Geophysical Research Letters. 30(2), 2002GL016189. DOI: https://doi.org/10.1029/2002GL016189
[68] Sicard, M., Bertolín, S., Mallet, M., et al., 2014. Estimation of mineral dust long-wave radiative forcing: Sensitivity study to particle properties and application to real cases in the region of Barcelona. Atmospheric Chemistry and Physics. 14(17), 9213–9231. DOI: https://doi.org/10.5194/acp-14-9213-2014
[69] Meng, F., Cao, C., Shao, X., 2015. Spatio-temporal variability of Suomi-NPP VIIRS-derived aerosol optical thickness over China in 2013. Remote Sensing of Environment. 163, 61–69. DOI: https://doi.org/10.1016/j.rse.2015.03.005
[70] Beloconi, A., Kamarianakis, Y., Chrysoulakis, N., 2016. Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data. Remote Sensing of Environment. 172, 148–164. DOI: https://doi.org/10.1016/j.rse.2015.10.017
[71] Li, Z., Zhang, Y., Shao, J., et al., 2016. Remote sensing of atmospheric particulate mass of dry PM2.5 near the ground: Method validation using ground-based measurements. Remote Sensing of Environment. 173, 59–68. DOI: https://doi.org/10.1016/j.rse.2015.11.019
[72] Zhang, Ying, Liu, Z., Lv, X., et al., 2016. Characteristics of the Transport of a Typical Pollution Event in the Chengdu Area Based on Remote Sensing Data and Numerical Simulations. Atmosphere. 7(10), 127. DOI: https://doi.org/10.3390/atmos7100127
[73] Lacagnina, C., Hasekamp, O.P., Bian, H., et al., 2015. Aerosol single‐scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. Journal of Geophysical Research: Atmospheres. 120(18), 9814–9836. DOI: https://doi.org/10.1002/2015JD023501
[74] Schuster, G.L., Dubovik, O., Holben, B.N., et al., 2005. Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. Journal of Geophysical Research: Atmospheres. 110(D10), 2004JD004548. DOI: https://doi.org/10.1029/2004JD004548
[75] De Leeuw, G., Holzer-Popp, T., Bevan, S., et al., 2015. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis. Remote Sensing of Environment. 162, 295–315. DOI: https://doi.org/10.1016/j.rse.2013.04.023
[76] Bogdanoff, A.S., Westphal, D.L., Campbell, J.R., et al., 2015. Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sensing of Environment. 159, 1–13. DOI: https://doi.org/10.1016/j.rse.2014.12.002
[77] Liousse, C., Cachier, H., Jennings, S.G., 1993. Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ). Atmospheric Environment. Part A. General Topics. 27(8), 1203–1211. DOI: https://doi.org/10.1016/0960-1686(93)90246-U
[78] Heald, C. L., Kroll, J.H., Jimenez, J.L., et al., 2010. A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters. 37(8), 2010GL042737. DOI: https://doi.org/10.1029/2010GL042737
[79] Heald, Colette L., Ridley, D.A., Kreidenweis, S.M., et al., 2010. Satellite observations cap the atmospheric organic aerosol budget. Geophysical Research Letters. 37(24), 2010GL045095. DOI: https://doi.org/10.1029/2010GL045095
[80] Martin, S.T., Andreae, M.O., Artaxo, P., et al., 2010. Sources and properties of Amazonian aerosol particles. Reviews of Geophysics. 48(2), RG2002. DOI: https://doi.org/10.1029/2008RG000280
[81] Pöhlker, C., Saturno, J., Krüger, M.L., et al., 2014. Efflorescence upon humidification? X‐ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration. Geophysical Research Letters. 41(10), 3681–3689. DOI: https://doi.org/10.1002/2014GL059409
[82] Chen, P., Kang, S., Li, C., et al., 2015. Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of The Total Environment. 538, 86–92. DOI: https://doi.org/10.1016/j.scitotenv.2015.08.006
[83] Adams, P.J., Seinfeld, J.H., Koch, D., et al., 2001. General circulation model assessment of direct radiative forcing by the sulfate‐nitrate‐ammonium‐water inorganic aerosol system. Journal of Geophysical Research: Atmospheres. 106(D1), 1097–1111. DOI: https://doi.org/10.1029/2000JD900512
[84] Charlson, R.J., Schwartz, S.E., Hales, J.M., et al., 1992. Climate Forcing by Anthropogenic Aerosols. Science. 255(5043), 423–430. DOI: https://doi.org/10.1126/science.255.5043.423
[85] Haywood, J.M., Roberts, D.L., Slingo, A., et al., 1997. General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol. Journal of Climate. 10(7), 1562–1577. DOI: https://doi.org/10.1175/1520-0442(1997)010%253C1562:GCMCOT%253E2.0.CO;2
[86] Andreae, M.O., Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews. 89(1–2), 13–41. DOI: https://doi.org/10.1016/j.earscirev.2008.03.001
[87] Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the Atmospheric Sciences. 34(7), 1149–1152. DOI: https://doi.org/10.1175/1520-0469(1977)034%253C1149:TIOPOT%253E2.0.CO;2
[88] Albrecht, B.A., 1989. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science. 245(4923), 1227–1230. DOI: https://doi.org/10.1126/science.245.4923.1227
[89] Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature. 409(6821), 695–697. DOI: https://doi.org/10.1038/35055518
[90] Yu, H., Kaufman, Y.J., Chin, M., et al., 2006. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics. 6(3), 613–666. DOI: https://doi.org/10.5194/acp-6-613-2006
[91] Intergovernmental Panel on Climate Change (IPCC), 2007. AR4 Climate Change 2007: Synthesis Report. IPCC: Geneva, Switzerland. Available from: https://www.ipcc.ch/report/ar4/syr/
[92] Mishchenko, M.I., Liu, L., Travis, L.D., et al., 2004. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types. Journal of Quantitative Spectroscopy and Radiative Transfer. 88(1–3), 139–147. DOI: https://doi.org/10.1016/j.jqsrt.2003.12.032
[93] Roesler, E.L., Penner, J.E., 2010. Can global models ignore the chemical composition of aerosols? Geophysical Research Letters. 37(24), 2010GL044282. DOI: https://doi.org/10.1029/2010GL044282
[94] Bzdek, B.R., Horan, A.J., Pennington, M.R., et al., 2014. Silicon is a Frequent Component of Atmospheric Nanoparticles. Environmental Science & Technology. 48(19), 11137–11145. DOI: https://doi.org/10.1021/es5026933
[95] Di Lorenzo, R.A., Young, C.J., 2016. Size separation method for absorption characterization in brown carbon: Application to an aged biomass burning sample. Geophysical Research Letters. 43(1), 458–465. DOI: https://doi.org/10.1002/2015GL066954
[96] Chen, H., Abdulla, H.A.N., Sanders, R.L., et al., 2014. Production of Black Carbon-like and Aliphatic Molecules from Terrestrial Dissolved Organic Matter in the Presence of Sunlight and Iron. Environmental Science & Technology Letters. 1(10), 399–404. DOI: https://doi.org/10.1021/ez5002598
[97] Lack, D.A., Moosmüller, H., McMeeking, G.R., et al., 2014. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties. Analytical and Bioanalytical Chemistry. 406(1), 99–122. DOI: https://doi.org/10.1007/s00216-013-7402-3
[98] Chen, B., Jie, D., Shi, M., et al., 2015. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China. Atmospheric Research. 164–165, 297–303. DOI: https://doi.org/10.1016/j.atmosres.2015.06.003
[99] Chen, H., Hu, D., Wang, L., et al., 2015. Modification in light absorption cross section of laboratory-generated black carbon-brown carbon particles upon surface reaction and hydration. Atmospheric Environment. 116, 253–261. DOI: https://doi.org/10.1016/j.atmosenv.2015.06.052
[100] Washenfelder, R.A., Azzarello, L., Ball, K., et al., 2022. Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes. Geophysical Research Letters. 49(9), e2022GL098951. DOI: https://doi.org/10.1029/2022GL098951
[101] Zhang, A., Zeng, Y., Yang, X., et al., 2023. Organic Matrix Effect on the Molecular Light Absorption of Brown Carbon. Geophysical Research Letters. 50(24), e2023GL106541. DOI: https://doi.org/10.1029/2023GL106541
[102] Cwiertny, D.M., Young, M.A., Grassian, V.H., 2008. Chemistry and Photochemistry of Mineral Dust Aerosol. Annual Review of Physical Chemistry. 59(1), 27–51. DOI: https://doi.org/10.1146/annurev.physchem.59.032607.093630
[103] Gaston, C.J., 2020. Re-examining Dust Chemical Aging and Its Impacts on Earth's Climate. Accounts of Chemical Research. 53(5), 1005–1013. DOI: https://doi.org/10.1021/acs.accounts.0c00102
[104] Wang, W., Zhou, H., Gao, Y., et al., 2024. Morphology and chemical composition of mineral particles in a special dust storm with high relative humidity in North China. Environmental Technology & Innovation. 36, 103823. DOI: https://doi.org/10.1016/j.eti.2024.103823
[105] Alexander, D.T.L., Crozier, P.A., Anderson, J.R., 2008. Brown Carbon Spheres in East Asian Outflow and Their Optical Properties. Science. 321(5890), 833–836. DOI: https://doi.org/10.1126/science.1155296
[106] Laskin, A., Laskin, J., Nizkorodov, S.A., 2015. Chemistry of Atmospheric Brown Carbon. Chemical Reviews. 115(10), 4335–4382. DOI: https://doi.org/10.1021/cr5006167
[107] Bluvshtein, N., Lin, P., Flores, J.M., et al., 2017. Broadband optical properties of biomass‐burning aerosol and identification of brown carbon chromophores. Journal of Geophysical Research: Atmospheres. 122(10), 5441–5456. DOI: https://doi.org/10.1002/2016JD026230
[108] Satish, R., Rastogi, N., 2019. On the Use of Brown Carbon Spectra as a Tool to Understand Their Broader Composition and Characteristics: A Case Study from Crop-residue Burning Samples. ACS Omega. 4(1), 1847–1853. DOI: https://doi.org/10.1021/acsomega.8b02637
[109] Hems, R.F., Schnitzler, E.G., Liu-Kang, C., et al., 2021. Aging of Atmospheric Brown Carbon Aerosol. ACS Earth and Space Chemistry. 5(4), 722–748. DOI: https://doi.org/10.1021/acsearthspacechem.0c00346
[110] Joo, T., Machesky, J.E., Zeng, L., et al., 2024. Secondary Brown Carbon Formation From Photooxidation of Furans From Biomass Burning. Geophysical Research Letters. 51(1), e2023GL104900. DOI: https://doi.org/10.1029/2023GL104900
[111] Tang, C., Tian, P., Zhang, X., et al., 2024. A New Method for Eliminating Dust Effects When Quantifying the Light Absorption Properties of Brown Carbon. Geophysical Research Letters. 51(3), e2023GL102875. DOI: https://doi.org/10.1029/2023GL102875
[112] Li, Yumin, Fu, T.-M., Yu, J.Z., et al., 2025. Nitrogen dominates global atmospheric organic aerosol absorption. Science. 387(6737), 989–995. DOI: https://doi.org/10.1126/science.adr4473
[113] Qiu, J., 1998. A Method to Determine Atmospheric Aerosol Optical Depth Using Total Direct Solar Radiation. Journal of the Atmospheric Sciences. 55(5), 744–757. DOI: https://doi.org/10.1175/1520-0469(1998)055%253C0744:AMTDAA%253E2.0.CO;2
[114] Wei, X., Chang, N.-B., Bai, K., et al., 2020. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology. 50(16), 1640–1725. DOI: https://doi.org/10.1080/10643389.2019.1665944
[115] Zhang, S., Wu, J., Fan, W., et al., 2020. Review of aerosol optical depth retrieval using visibility data. Earth-Science Reviews. 200, 102986. DOI: https://doi.org/10.1016/j.earscirev.2019.102986
[116] Zhang, F., 2023. Factors Influencing the Spatio–Temporal Variability of Aerosol Optical Depth over the Arid Region of Northwest China. Atmosphere. 15(1), 54. DOI: https://doi.org/10.3390/atmos15010054
[117] Levy, R.C., Remer, L.A., Dubovik, O., 2007. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres. 112(D13), 2006JD007815. DOI: https://doi.org/10.1029/2006JD007815
[118] Li, Z., Gu, X., Wang, L., et al., 2013. Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmospheric Chemistry and Physics. 13(20), 10171–10183. DOI: https://doi.org/10.5194/acp-13-10171-2013
[119] Park, S.S., Kim, J., Lee, J., et al., 2014. Combined dust detection algorithm by using MODIS infrared channels over East Asia. Remote Sensing of Environment. 141, 24–39. DOI: https://doi.org/10.1016/j.rse.2013.09.019
[120] Li, Z., Li, L., Zhang, F., et al., 2015. Comparison of aerosol properties over Beijing and Kanpur: Optical, physical properties and aerosol component composition retrieved from 12 years ground‐based Sun‐sky radiometer remote sensing data. Journal of Geophysical Research: Atmospheres. 120(4), 1520–1535. DOI: https://doi.org/10.1002/2014JD022593
[121] Shi, Z., Xie, Y., Li, Z., et al., 2023. A generalized land surface reflectance reconstruction method for aerosol retrieval: Application to the Particulate Observing Scanning Polarimeter (POSP) onboard GaoFen-5 (02) satellite. Remote Sensing of Environment. 295, 113683. DOI: https://doi.org/10.1016/j.rse.2023.113683
[122] Li, W., Shao, L., 2012. Chemical Modification of Dust Particles during Different Dust Storm Episodes. Aerosol and Air Quality Research. 12(6), 1095–1104. DOI: https://doi.org/10.4209/aaqr.2011.11.0188
[123] Zhou, B., Zhang, S., Xue, R., et al., 2023. A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring. Journal of Environmental Sciences. 123, 3–14. DOI: https://doi.org/10.1016/j.jes.2021.12.008
[124] Lee, K.H., Li, Z., Kim, Y.J., et al., 2009. Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades. In: Kim, Y.J., Platt, U., Gu, M.B., et al. (Eds.). Atmospheric and Biological Environmental Monitoring. Springer: Dordrecht, Netherlands. pp. 13–38. DOI: https://doi.org/10.1007/978-1-4020-9674-7_2
[125] Verma, S., Prakash, D., Soni, M., et al., 2019. Atmospheric Aerosols Monitoring: Ground and Satellite-Based Instruments. In: Sarvajayakesavalu, S. (Ed.). Advances in Environmental Monitoring and Assessment. IntechOpen: London, UK. DOI: https://doi.org/10.5772/intechopen.80489
[126] Li, Z., Xie, Y., Shi, Y., et al., 2022. A review of collaborative remote sensing observation of greenhouse gases and aerosol with atmospheric environment satellites. National Remote Sensing Bulletin. 26(5), 795–816. DOI: https://doi.org/10.11834/jrs.20221387 (in Chinese)
[127] Pósfai, M., Buseck, P.R., 2010. Nature and Climate Effects of Individual Tropospheric Aerosol Particles. Annual Review of Earth and Planetary Sciences. 38(1), 17–43. DOI: https://doi.org/10.1146/annurev.earth.031208.100032
[128] Penner, J.E., Andreae, M.O., Annegarn, H., et al., 2001. Aerosols, their direct and indirect effects. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK. pp. 289–348.
[129] Penner, J.E., Hegg, D., Leaitch, R., 2001. Peer Reviewed: Unraveling the role of aerosols in climate change. Environmental Science & Technology. 35(15), 332A-340A. DOI: https://doi.org/10.1021/es0124414
[130] Grobety, B., Giere, R., Dietze, V., et al., 2010. Airborne Particles in the Urban Environment. Elements. 6(4), 229–234. DOI: https://doi.org/10.2113/gselements.6.4.229
[131] Fierce, L., Onasch, T.B., Cappa, C.D., et al., 2020. Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proceedings of the National Academy of Sciences. 117(10), 5196–5203. DOI: https://doi.org/10.1073/pnas.1919723117
[132] Andreae, M.O., Gelencsér, A., 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics. 6(10), 3131–3148. DOI: https://doi.org/10.5194/acp-6-3131-2006
[133] Chen, Q., Heald, C.L., Jimenez, J.L., et al., 2015. Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters. 42(10), 4182–4189. DOI: https://doi.org/10.1002/2015GL063693
[134] Penner, J.E., Chuang, C.C., Grant, K., 1998. Climate forcing by carbonaceous and sulfate aerosols. Climate Dynamics. 14(12), 839–851. DOI: https://doi.org/10.1007/s003820050259
[135] Menon, S., Koch, D., Beig, G., et al., 2010. Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics. 10(10), 4559–4571. DOI: https://doi.org/10.5194/acp-10-4559-2010
[136] Ramana, M.V., Ramanathan, V., Feng, Y., et al., 2010. Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nature Geoscience. 3(8), 542–545. DOI: https://doi.org/10.1038/ngeo918
[137] Wang, Q., Han, Yongming, Ye, J., et al., 2019. High Contribution of Secondary Brown Carbon to Aerosol Light Absorption in the Southeastern Margin of Tibetan Plateau. Geophysical Research Letters. 46(9), 4962–4970. DOI: https://doi.org/10.1029/2019GL082731
[138] Liu, S., Aiken, A.C., Arata, C., et al., 2014. Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. Geophysical Research Letters. 41(2), 742–748. DOI: https://doi.org/10.1002/2013GL058392
[139] Saleh, R., Adams, P.J., Donahue, N.M., et al., 2016. The interplay between assumed morphology and the direct radiative effect of light‐absorbing organic aerosol. Geophysical Research Letters. 43(16), 8735–8743. DOI: https://doi.org/10.1002/2016GL069786
[140] Xu, N., Hu, M., Li, X., et al., 2024. Unraveling the Light‐Absorbing Properties of Brown Carbon at a Molecular Level. Geophysical Research Letters. 51(10), e2024GL108834. DOI: https://doi.org/10.1029/2024GL108834
[141] Vakkari, V., Kerminen, V., Beukes, J.P., et al., 2014. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters. 41(7), 2644–2651. DOI: https://doi.org/10.1002/2014GL059396
[142] Zhai, J., Yang, X., Li, L., et al., 2022. Direct Observation of the Transitional Stage of Mixing‐State‐Related Absorption Enhancement for Atmospheric Black Carbon. Geophysical Research Letters. 49(23), e2022GL101368. DOI: https://doi.org/10.1029/2022GL101368
[143] Ehn, M., Thornton, J.A., Kleist, E., et al., 2014. A large source of low-volatility secondary organic aerosol. Nature. 506(7489), 476–479. DOI: https://doi.org/10.1038/nature13032
[144] Giere, R., Querol, X., 2010. Solid Particulate Matter in the Atmosphere. Elements. 6(4), 215–222. DOI: https://doi.org/10.2113/gselements.6.4.215
[145] Bianchi, F., Tröstl, J., Junninen, H., et al., 2016. New particle formation in the free troposphere: A question of chemistry and timing. Science. 352(6289), 1109–1112. DOI: https://doi.org/10.1126/science.aad5456
[146] Fortems‐Cheiney, A., Dufour, G., Hamaoui‐Laguel, L., et al., 2016. Unaccounted variability in NH3 agricultural sources detected by IASI contributing to European spring haze episode. Geophysical Research Letters. 43(10), 5475–5482. DOI: https://doi.org/10.1002/2016GL069361
[147] Womack, C.C., McDuffie, E.E., Edwards, P.M., et al., 2019. An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. Geophysical Research Letters. 46(9), 4971–4979. DOI: https://doi.org/10.1029/2019GL082028
[148] Wang, M., Kong, W., Marten, R., et al., 2020. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature. 581(7807), 184–189. DOI: https://doi.org/10.1038/s41586-020-2270-4
[149] Zhang, F., Wang, Yuan, Peng, J., et al., 2020. An unexpected catalyst dominates formation and radiative forcing of regional haze. Proceedings of the National Academy of Sciences. 117(8), 3960–3966. DOI: https://doi.org/10.1073/pnas.1919343117
[150] Xu, L., Penner, J.E., 2012. Global simulations of nitrate and ammonium aerosols and their radiative effects. Atmospheric Chemistry and Physics. 12(20), 9479–9504. DOI: https://doi.org/10.5194/acp-12-9479-2012
[151] Sokolik, I.N., Toon, O.B., 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research: Atmospheres. 104(D8), 9423–9444. DOI: https://doi.org/10.1029/1998JD200048
[152] Adebiyi, A.A., Huang, Y., Samset, B.H., et al., 2023. Observations suggest that North African dust absorbs less solar radiation than models estimate. Communications Earth & Environment. 4(1), 168. DOI: https://doi.org/10.1038/s43247-023-00825-2
[153] Nair, H.R.C.R., Budhavant, K., Manoj, M.R., et al., 2023. Aerosol demasking enhances climate warming over South Asia. npj Climate and Atmospheric Science. 6(1), 39. DOI: https://doi.org/10.1038/s41612-023-00367-6
[154] Boucher, O., Randall, D., Artaxo, P., et al., 2013 Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Cambridge University Press: Cambridge, UK. pp. 614–658.
[155] Vaishya, A., Ovadnevaite, J., Bialek, J., et al., 2013. Bistable effect of organic enrichment on sea spray radiative properties. Geophysical Research Letters. 40(24), 6395–6398. DOI: https://doi.org/10.1002/2013GL058452
[156] Murphy, D.M., Anderson, J.R., Quinn, P.K., et al., 1998. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature. 392(6671), 62–65. DOI: https://doi.org/10.1038/32138
[157] Smirnov, A., Holben, B.N., Kaufman, Y.J., et al., 2002. Optical Properties of Atmospheric Aerosol in Maritime Environments. Journal of the Atmospheric Sciences. 59(3), 501–523. DOI: https://doi.org/10.1175/1520-0469(2002)059%253C0501:OPOAAI%253E2.0.CO;2
[158] Zheng, J., Zhang, Z., DeSouza‐Machado, S., et al., 2024. Assessment of Dust Size Retrievals Based on AERONET: A Case Study of Radiative Closure From Visible‐Near‐Infrared to Thermal Infrared. Geophysical Research Letters. 51(4), e2023GL106808. DOI: https://doi.org/10.1029/2023GL106808
[159] Bukowiecki, N., Lienemann, P., Hill, M., et al., 2009. Real-World Emission Factors for Antimony and Other Brake Wear Related Trace Elements: Size-Segregated Values for Light and Heavy Duty Vehicles. Environmental Science & Technology. 43(21), 8072–8078. DOI: https://doi.org/10.1021/es9006096
[160] Weiss, R.E., Waggoner, A.P., Charlson, R.J., et al., 1977. Sulfate Aerosol: Its Geographical Extent in the Midwestern and Southern United States. Science. 195(4282), 979–981. DOI: https://doi.org/10.1126/science.195.4282.979
[161] Chuang, C.C., Penner, J.E., 1995. Effects of anthropogenic sulfate on cloud drop nucleation and optical properties. Tellus B: Chemical and Physical Meteorology. 47(5), 566. DOI: https://doi.org/10.3402/tellusb.v47i5.16072
[162] Formenti, P., Caquineau, S., Desboeufs, K., et al., 2014. Mapping the physico-chemical properties of mineral dust in western Africa: Mineralogical composition. Atmospheric Chemistry and Physics. 14(19), 10663–10686. DOI: https://doi.org/10.5194/acp-14-10663-2014
[163] Plantier, M., 2021. Comparative Mineralogy and Phase Chemistry of Sahara Desert Soil Particles and Thereof Suspended Atmospheric Dust [Master's Thesis]. Texas Tech University: Lubbock, TX, USA. Available from: https://hdl.handle.net/2346/87863
[164] Jeong, G.Y., 2024. Microanalysis and mineralogy of Asian and Saharan dust. Journal of Analytical Science and Technology. 15(1), 10. DOI: https://doi.org/10.1186/s40543-024-00425-5
[165] Kiselev, A., Bachmann, F., Pedevilla, P., et al., 2017. Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science. 355(6323), 367–371. DOI: https://doi.org/10.1126/science.aai8034
[166] Atkinson, J.D., Murray, B.J., Woodhouse, M.T., et al., 2013. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature. 498(7454), 355–358. DOI: https://doi.org/10.1038/nature12278
[167] Duyckaerts, G., 1959. The infra-red analysis of solid substances: A review. The Analyst. 84(997), 201. DOI: https://doi.org/10.1039/an9598400201
[168] Peterson, K.A., Francis, R.M., Banach, C.A., et al., 2024. Method to derive the infrared complex refractive indices n(λ) and k(λ) for organic solids from KBr pellet absorption measurements. Applied Optics. 63(6), 1553. DOI: https://doi.org/10.1364/AO.514661
[169] Khan, M.M., 2025. 16—Fourier transform infrared spectroscopy. In: Photocatalysts: Synthesis and Characterization Methods. Elsevier: London, UK. pp. 175–184. DOI: https://doi.org/10.1016/B978-0-443-28913-2.00017-4
[170] Govindaraju, K., 1994. 1994 Compilation Of Working Values And Sample Description For 383 Geostandards. Geostandards Newsletter. 18(S1), 1–158. DOI: https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1
[171] Mertzman, S.A., 2000. K-Ar results from the southern Oregon: Northern California Cascade Range. Oregon Geology. 62, 99–122.
[172] Reichen, L.E., Fahey, J.J., 1962. An improved method for the determination of FeO in rocks and minerals including garnet. U.S. Geological Survey Bulletin. 1144, B1–B5. DOI: https://doi.org/10.3133/b1144B
[173] Weyer, L.G., 1985. Near-Infrared Spectroscopy of Organic Substances. Applied Spectroscopy Reviews. 21(1–2), 1–43. DOI: https://doi.org/10.1080/05704928508060427
[174] Silverstein, R.M., Bassler, C.G., Morrill, T.C., 1991. Spectrometric Identification of Organic Compounds, 5th ed. Wiley: New York, NY, USA.
[175] Clark, R.N., King, T.V.V., Klejwa, M., et al., 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth. 95(B8), 12653–12680. DOI: https://doi.org/10.1029/JB095iB08p12653
[176] Rice, M.S., Cloutis, E.A., Bell, J.F., et al., 2013. Reflectance spectra diversity of silica-rich materials: Sensitivity to environment and implications for detections on Mars. Icarus. 223(1), 499–533. DOI: https://doi.org/10.1016/j.icarus.2012.09.021
[177] Cornell, R.M., Schwertmann, U., 1996. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH Press: Weinheim, Germany.
[178] Berg, B.L., Cloutis, E.A., Beck, P., et al., 2016. Reflectance spectroscopy (0.35–8 μm) of ammonium-bearing minerals and qualitative comparison to Ceres-like asteroids. Icarus. 265, 218–237. DOI: https://doi.org/10.1016/j.icarus.2015.10.028
[179] Ross, S.D., 1974. Sulphates and other Oxy-anions of Group VI. In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 423–444. DOI: https://doi.org/10.1180/mono-4.18
[180] Fastelli, M., Comodi, P., Maturilli, A., et al., 2020. Reflectance Spectroscopy of Ammonium Salts: Implications for Planetary Surface Composition. Minerals. 10(10), 902. DOI: https://doi.org/10.3390/min10100902
[181] Théorêt, A., Sandorfy, C., 1964. Infrared Spectra And Crystalline Phase Transitions Of Ammonium Nitrate. Canadian Journal of Chemistry. 42(1), 57–62. DOI: https://doi.org/10.1139/v64-009
[182] Farmer, V.F., 1974. The Layer Silicates. In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 331–364.
[183] Moenke, H.H.W., 1974. Vibrational Spectra and the Crystal-chemical Classification of Minerals. In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 111–118. DOI: https://doi.org/10.1180/mono-4.7
[184] Moenke, H.H.W., 1974. Silica, the Three-dimensional Silicates, Borosilicates and Beryllium Silicates, In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 365–382. DOI: https://doi.org/10.1180/mono-4.16
[185] Salisbury, J.W., Walter, L.S., Vergo, N., 1987. Mid-Infrared (2.1–25 µm) Spectra of Minerals. U.S. Geological Survey: Washington, DC, USA.
[186] Fernández-Jiménez, A., Palomo, A., 2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous and Mesoporous Materials. 86(1–3), 207–214. DOI: https://doi.org/10.1016/j.micromeso.2005.05.057
[187] White, W.B., 1974. The Carbonate Minerals. In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 227–284.
[188] Fauser, P., 1999. Particulate Air Pollution, with Emphasis on Traffic Generated Aerosols [PhD Thesis]. Technical University of Denmark: Copenhagen, Denmark.
[189] Wheeler, O.H., 1959. Near Infrared Spectra of Organic Compounds. Chemical Reviews. 59(4), 629–666. DOI: https://doi.org/10.1021/cr50028a004
[190] Kirchner, U., Vogt, R., Natzeck, C., et al., 2003. Single particle MS, SNMS, SIMS, XPS, and FTIR spectroscopic analysis of soot particles during the AIDA campaign. Journal of Aerosol Science. 34(10), 1323–1346. DOI: https://doi.org/10.1016/S0021-8502(03)00362-8
[191] Cloutis, E., Hawthorne, F., Mertzman, S., et al., 2006. Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus. 184(1), 121–157. DOI: https://doi.org/10.1016/j.icarus.2006.04.003
[192] Dlapa, P., Bodí, M.B., Mataix-Solera, J., et al., 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. CATENA. 108, 35–43. DOI: https://doi.org/10.1016/j.catena.2012.02.011
[193] Kleinman, D.A., Spitzer, W.G., 1962. Theory of the Optical Properties of Quartz in the Infrared. Physical Review. 125(1), 16–30. DOI: https://doi.org/10.1103/PhysRev.125.16
[194] Boer, G.J., Sokolik, I.N., Martin, S.T., 2007. Infrared optical constants of aqueous sulfate–nitrate–ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features. Journal of Quantitative Spectroscopy and Radiative Transfer. 108(1), 17–38. DOI: https://doi.org/10.1016/j.jqsrt.2007.02.017
[195] Naiman, Z., Quade, J., Patchett, P.J., 2000. Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States. Geochimica et Cosmochimica Acta. 64(18), 3099–3109. DOI: https://doi.org/10.1016/S0016-7037(00)00410-5
[196] Wang, Y., Zhang, X., Arimoto, R., et al., 2005. Characteristics of carbonate content and carbon and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources. Atmospheric Environment. 39(14), 2631–2642. DOI: https://doi.org/10.1016/j.atmosenv.2005.01.015
[197] Gaffey, S.J., 1987. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 µm): Anhydrous carbonate minerals. Journal of Geophysical Research: Solid Earth. 92(B2), 1429–1440. DOI: https://doi.org/10.1029/JB092iB02p01429
[198] Singer, A., 1988. Illite in aridic soils, desert dusts and desert loess. Sedimentary Geology. 59(3–4), 251–259. DOI: https://doi.org/10.1016/0037-0738(88)90079-6
[199] Claquin, T., Schulz, M., Balkanski, Y.J., 1999. Modeling the mineralogy of atmospheric dust sources. Journal of Geophysical Research: Atmospheres. 104(D18), 22243–22256. DOI: https://doi.org/10.1029/1999JD900416
[200] Cuadros, J., Diaz-Hernandez, J.L., Sanchez-Navas, A., et al., 2015. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust. Atmospheric Environment. 120, 160–172. DOI: https://doi.org/10.1016/j.atmosenv.2015.08.077
[201] Vakulikova, L., Plenova, E., 2005. Identification of clay minerals and micas in sedimentary rocks. Acta Geodynamica et Geomateriala. 2, 167–175.
[202] Caquineau, S., Gaudichet, A., Gomes, L., et al., 1998. Saharan dust: Clay ratio as a relevant tracer to assess the origin of soil‐derived aerosols. Geophysical Research Letters. 25(7), 983–986. DOI: https://doi.org/10.1029/98GL00569
[203] Ryskin, Y.I., 1974. The Vibrations of Protons in Minerals: Hydroxyl, water and ammonium. In: Farmer, V.C. (Ed.). The Infrared Spectra of Minerals. Mineralogical Society of Great Britain and Ireland: London, UK. pp. 137–181. DOI: https://doi.org/10.1180/mono-4.9
[204] Vakulikova, L., Plenova, E., Vallova, S., et al., 2015. Characterization and differentiation of kaolinites from selected Czech deposits using infrared spectroscopy and differential thermal analysis. Acta Geodynamica et Geomateriala. 8, 59–67.
[205] Yakobi-Hancock, J.D., Ladino, L.A., Abbatt, J.P.D., 2013. Feldspar minerals as efficient deposition ice nuclei. Atmospheric Chemistry and Physics. 13(22), 11175–11185. DOI: https://doi.org/10.5194/acp-13-11175-2013
[206] Harrison, A.D., Whale, T.F., Carpenter, M.A., et al., 2016. Not all feldspars are equal: A survey of ice nucleating propertiesacross the feldspar group of minerals. Atmospheric Chemistry and Physics. 16(17), 10927–10940. DOI: https://doi.org/10.5194/acp-16-10927-2016
[207] Yun, J., Link, N., Kumar, A., et al., 2020. Surface Composition Dependence on the Ice Nucleating Ability of Potassium-Rich Feldspar. ACS Earth and Space Chemistry. 4(6), 873–881. DOI: https://doi.org/10.1021/acsearthspacechem.0c00077
[208] Chatziparaschos, M., Daskalakis, N., Myriokefalitakis, S., et al., 2023. Role of K-feldspar and quartz in global ice nucleation by mineral dust in mixed-phase clouds. Atmospheric Chemistry and Physics. 23(3), 1785–1801. DOI: https://doi.org/10.5194/acp-23-1785-2023
[209] Aléon, J., Chaussidon, M., Marty, B., et al., 2002. Oxygen isotopes in single micrometer-sized quartz grains: Tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica et Cosmochimica Acta. 66(19), 3351–3365. DOI: https://doi.org/10.1016/S0016-7037(02)00940-7
[210] Cecil, C.B., Hemingway, B.S., Dulong, F.T., 2018. The Chemistry of Eolian Quartz Dust and the Origin of Chert. Journal of Sedimentary Research. 88(6), 743–752. DOI: https://doi.org/10.2110/jsr.2018.39
[211] Harrison, A.D., Lever, K., Sanchez-Marroquin, A., et al., 2019. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmospheric Chemistry and Physics. 19(17), 11343–11361. DOI: https://doi.org/10.5194/acp-19-11343-2019
[212] Hoornaert, S., Van Malderen, H., Van Grieken, R., 1996. Gypsum and Other Calcium-Rich Aerosol Particles above the North Sea. Environmental Science & Technology. 30(5), 1515–1520. DOI: https://doi.org/10.1021/es9504350
[213] Zhou, G., Tazaki, K., 1996. Seasonal variation of gypsum in aerosol and its effect on the acidity of wet precipitation on the Japan sea side of Japan. Atmospheric Environment. 30(19), 3301–3308. DOI: https://doi.org/10.1016/1352-2310(96)00071-4
[214] Díaz-Hernández, J.L., Martín-Ramos, J.D., López-Galindo, A., 2011. Quantitative analysis of mineral phases in atmospheric dust deposited in the south-eastern Iberian Peninsula. Atmospheric Environment. 45(18), 3015–3024. DOI: https://doi.org/10.1016/j.atmosenv.2011.03.024
[215] White, W.H., Hyslop, N.P., Trzepla, K., et al., 2015. Regional transport of a chemically distinctive dust: Gypsum from White Sands, New Mexico (USA). Aeolian Research. 16, 1–10. DOI: https://doi.org/10.1016/j.aeolia.2014.10.001
[216] Ma, Q., He, H., Liu, Y., et al., 2013. Heterogeneous and multiphase formation pathways of gypsum in the atmosphere. Physical Chemistry Chemical Physics. 15(44), 19196. DOI: https://doi.org/10.1039/c3cp53424c
[217] Miyamoto, C., Iizuka, Y., Matoba, S., et al., 2022. Gypsum formation from calcite in the atmosphere recorded in aerosol particles transported and trapped in Greenland ice core sample is a signature of secular change of SO2 emission in East Asia. Atmospheric Environment. 278, 119061. DOI: https://doi.org/10.1016/j.atmosenv.2022.119061
[218] Adler, H.H., Kerr, P.F., 1965. Variations in infrared spectra, molecular symmetry and site symmetry of sulfate minerals. American Mineralogist. 50 (1–2), 132–147.
[219] Perkins, R.J., Gillette, S.M., Hill, T.C.J., et al., 2020. The Labile Nature of Ice Nucleation by Arizona Test Dust. ACS Earth and Space Chemistry. 4(1), 133–141. DOI: https://doi.org/10.1021/acsearthspacechem.9b00304
[220] Vlasenko, A., Sjögren, S., Weingartner, E., et al., 2005. Generation of Submicron Arizona Test Dust Aerosol: Chemical and Hygroscopic Properties. Aerosol Science and Technology. 39(5), 452–460. DOI: https://doi.org/10.1080/027868290959870
[221] Tang, M., Jia, X., Chen, L., et al., 2023. Heterogeneous reaction of NO2 with feldspar, three clay minerals and Arizona Test Dust. Journal of Environmental Sciences. 130, 65–74. DOI: https://doi.org/10.1016/j.jes.2022.07.023
[222] Pye, K., 1984. Loess. Progress in Physical Geography: Earth and Environment. 8(2), 176–217. DOI: https://doi.org/10.1177/030913338400800202
[223] Gallet, S., Jahn, B., Van Vliet Lanoë, B., et al., 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters. 156(3–4), 157–172. DOI: https://doi.org/10.1016/S0012-821X(97)00218-5
[224] Carey, S.N., Sigurdsson, H., 1982. Influence of particle aggregation on deposition of distal tephra from the MAy 18, 1980, eruption of Mount St. Helens volcano. Journal of Geophysical Research: Solid Earth. 87(B8), 7061–7072. DOI: https://doi.org/10.1029/JB087iB08p07061
[225] Taylor, H.E., Lichte, F.E., 1980. Chemical composition of Mount St. Helens volcanic ash. Geophysical Research Letters. 7(11), 949–952. DOI: https://doi.org/10.1029/GL007i011p00949
[226] De Leeuw, G., Andreas, E.L., Anguelova, M.D., et al., 2011. Production flux of sea spray aerosol. Reviews of Geophysics. 49(2), 2010RG000349. DOI: https://doi.org/10.1029/2010RG000349
[227] Cochran, R.E., Ryder, O.S., Grassian, V.H., et al., 2017. Sea Spray Aerosol: The Chemical Link between the Oceans, Atmosphere, and Climate. Accounts of Chemical Research. 50(3), 599–604. DOI: https://doi.org/10.1021/acs.accounts.6b00603
[228] Schmitt-Kopplin, P., Liger-Belair, G., Koch, B.P., et al., 2012. Dissolved organic matter in sea spray: A transfer study from marine surface water to aerosols. Biogeosciences. 9(4), 1571–1582. DOI: https://doi.org/10.5194/bg-9-1571-2012
[229] Schiffer, J.M., Mael, L.E., Prather, K.A., et al., 2018. Sea Spray Aerosol: Where Marine Biology Meets Atmospheric Chemistry. ACS Central Science. 4(12), 1617–1623. DOI: https://doi.org/10.1021/acscentsci.8b00674
[230] Hanley, J., Chevrier, V.F., Barrows, R.S., et al., 2015. Near‐ and mid‐infrared reflectance spectra of hydrated oxychlorine salts with implications for Mars. Journal of Geophysical Research: Planets. 120(8), 1415–1426. DOI: https://doi.org/10.1002/2013JE004575
[231] Quinn, P.K., Collins, D.B., Grassian, V.H., et al., 2015. Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chemical Reviews. 115(10), 4383–4399. DOI: https://doi.org/10.1021/cr500713g
[232] Dlapa, P., Bodí, M.B., Mataix-Solera, J., et al., 2015. Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. CATENA. 135, 369–376. DOI: https://doi.org/10.1016/j.catena.2014.06.018
[233] Milkey, R.G., 1960. Infrared spectra of some tectosilicates. American Mineralogist. 45, 990–1007.
[234] Salisbury, J.W., Walter, L.S., 1989. Thermal infrared (2.5–13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research: Solid Earth. 94(B7), 9192–9202. DOI: https://doi.org/10.1029/JB094iB07p09192
[235] Walter, L.S., Salisbury, J.W., 1989. Spectral characterization of igneous rocks in the 8‐ to 12‐μm region. Journal of Geophysical Research: Solid Earth. 94(B7), 9203–9213. DOI: https://doi.org/10.1029/JB094iB07p09203
[236] Omori, K., 1967. Infrared Study of Mechanical Mixtures of Quartz, Orthoclase And Oligoclase from 11 to 25 Microns. Mineralogical Journal. 5(3), 169–179. DOI: https://doi.org/10.2465/minerj1953.5.169
[237] Saikia, B.J., Parthasarathy, G., Sarmah, N.C., 2008. Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. Bulletin of Materials Science. 31(5), 775–779. DOI: https://doi.org/10.1007/s12034-008-0123-0
[238] Palik, E.D., 1997. Potassium Bromide (KBr). In Handbook of Optical Constants of Solids, Volume II. Elsevier: New York, NY, USA. pp. 989–1004. DOI: https://doi.org/10.1016/B978-012544415-6.50090-X
[239] Gupta, R.P., 2018. Spectra of Minerals and Rocks. In Remote Sensing Geology. Springer: Berlin, Germany. pp. 23–35. DOI: https://doi.org/10.1007/978-3-662-55876-8_3
[240] Rossman, G.R., 2014. Optical Spectroscopy. Reviews in Mineralogy and Geochemistry. 78(1), 371–398. DOI: https://doi.org/10.2138/rmg.2014.78.9
[241] Cheng, L., Li, L., Chen, L., et al., 2019. Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period. International Journal of Environmental Research and Public Health. 16(19), 3522. DOI: https://doi.org/10.3390/ijerph16193522
[242] Michalsky, J.J., Schlemmer, J.A., Berkheiser, W.E., et al., 2001. Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links programs. Journal of Geophysical Research: Atmospheres. 106(D11), 12099–12107. DOI: https://doi.org/10.1029/2001JD900096
[243] Kaskaoutis, D.G., Kambezidis, H.D., 2006. Investigation into the wavelength dependence of the aerosol optical depth in the Athens area. Quarterly Journal of the Royal Meteorological Society. 132(620), 2217–2234. DOI: https://doi.org/10.1256/qj.05.183
[244] Myers, T.L., Francis, R.M., Banach, C.A., et al., 2019. Obtaining the complex optical constants n and k via quantitative absorption measurements in KBr pellets. In Proceedings of Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing, Baltimore, MD, USA, 17 May 2019; p. 21. DOI: https://doi.org/10.1117/12.2519503
[245] Biermann, U.M., Luo, B.P., Peter, Th., 2000. Absorption Spectra and Optical Constants of Binary and Ternary Solutions of H2SO4 , HNO3, and H2O in the Mid Infrared at Atmospheric Temperatures. The Journal of Physical Chemistry A. 104(4), 783–793. DOI: https://doi.org/10.1021/jp992349i
[246] Nousiainen, T., 2009. Optical modeling of mineral dust particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer. 110(14–16), 1261–1279. DOI: https://doi.org/10.1016/j.jqsrt.2009.03.002
[247] Di Biagio, C., Boucher, H., Caquineau, S., et al., 2014. Variability of the infrared complex refractive index of African mineral dust: Experimental estimation and implications for radiative transfer and satellite remote sensing. Atmospheric Chemistry and Physics. 14(20), 11093–11116. DOI: https://doi.org/10.5194/acp-14-11093-2014
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2026 Edward Cloutis, Matthew Cuddy, Cameron Hunter, Daniel Applin, Paul Mann, Stanley Mertzman

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.




Edward Cloutis