Projected Changes in the Characteristics of Dry and Wet Episodes over Côte d’Ivoire

Authors

  • Stella Todzo

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

  • Élisée Yapo Akobé

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire (LASMES), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

  • Adama Diawara

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

  • Ibrahima Diba

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

    Laboratoire d’Océanographie, des Sciences de l’Environnement et du Climat (LOSEC), UFR Sciences et Technologies, Université Assane SECK de Ziguinchor, Ziguinchor 270000, Senegal

  • Assi Louis Martial Yapo

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

    Unité de Formation et de Recherché Sciences et Technologies, Université Alassane Ouattara, Bouaké BP V 108, Côte d’Ivoire

  • Thierry C. Fotso-Nguemo

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

    Climate Change Research Laboratory (CCRL), National Institute of Cartography, Yaounde P.O. Box 157, Cameroon

  • Benjamin Kouassi

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire (LASMES), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

  • Fidèle Yoroba

    Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire (LASMES), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

  • Arona Diedhiou

    Laboratoire Mixte International “Nexus Climat-Eau-Énergie-Agriculture en Afrique de l’Ouest et Services Climatiques” (LMI NEXUS), African Centre of Excellence on Climate Change, Biodiversity and Sustainable Agriculture (CEA CCBAD), Université Félix Houphouët-Boigny, Abidjan BP 463, Côte d’Ivoire

    Institut des Géosciences de l’Environnement (IGE), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Université Grenoble Alpes, Institut Polytechnique de Grenoble (Grenoble INP), 38000 Grenoble, France

DOI:

https://doi.org/10.30564/jasr.v9i1.12989
Received: 10 December 2025 | Revised: 1 January 2026 | Accepted: 5 January 2026 | Published Online: 13 January 2026

Abstract

This study analyses the persistence and frequency of multi-day dry and wet rainfall episodes over Côte d’Ivoire, which are quantified using CPC observations (1979–2022) and a 14-member Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa ensemble under RCP4.5 and RCP8.5. Rather than focusing solely on total rainfall, we quantify rainfall by duration and frequency of dry spells and wet episodes to capture duration-driven drought and flood risks. Historically, dry episodes last 8–15 days, with maximum annual dry spells of 2540 days, while wet episodes persist for 3–6 days and occur 48 times per year. Projections show substantial changes in rainfall sequencing. Under RCP4.5, mean dry-episode durations increase by +1 to +2 days by mid-century and +2 to +4 days by late-century; under RCP8.5, increases reach +2 to +3 days and +3 to +6 days, respectively, with maximum dry-spell extensions of +15 to +25 days in northern regions. Wet episodes become 1–4 events per year, less frequent but lengthen by +1 to +4 days, especially along the coast under RCP8.5. These shifts suggest fewer but more persistent rainfall events, which heighten drought-related crop-water stress and multi-day flood accumulation risks. The results provide actionable insights for agriculture, hydrology and climate-risk planning by highlighting rainfall sequencing and persistence metrics not captured by traditional rainfall totals. This nuanced perspective enhances understanding of drought, flood accumulation, and agricultural risk under changing climate conditions.

Keywords:

Côte d’Ivoire; Dry Episodes; Wet Episodes; Rainfall Persistence; West African Monsoon; Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa

References

[1] Nicholson, S.E., 2013. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorology. 2013(1), 453521. DOI: https://doi.org/10.1155/2013/453521

[2] Diedhiou, A., Bichet, A., Wartenburger, R., et al., 2018. Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming. Environmental Research Letters. 13(6), 065020. DOI: https://doi.org/10.1088/1748-9326/aac3e5

[3] Sultan, B., Janicot, S., 2003. The West African Monsoon Dynamics. Part I: Documentation of Intra-Seasonal Variability. Journal of Climate. 16, 3389–3406. DOI: https://doi.org/10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2

[4] Fitzpatrick, R.G.J., Parker, D.J., Marsham, J.H., et al., 2020. What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change? Journal of Climate. 33, 3151–3172. DOI: https://doi.org/10.1175/JCLI-D-19-0380.1

[5] Worou, K., Goosse, H., Fichefet, T., et al., 2022. Weakened impact of the Atlantic Niño on the future equatorial Atlantic and Guinea Coast rainfall. Earth System Dynamics. 13, 231–249. DOI: https://doi.org/10.5194/esd-13-231-2022

[6] Xing, W., Wang, C., Zhang, L., et al., 2024. Influences of Central and Eastern Atlantic Niño on the West African and South American summer monsoons. npj Climate and Atmospheric Science. 7, 214. DOI: https://doi.org/10.1038/s41612-024-00762-7

[7] Illig, S., Bachèlery, M.-L., 2024. The 2021 Atlantic Niño and Benguela Niño Events: External Forcings and Air-Sea Interactions. Climate Dynamics. 62, 679–702. DOI: https://doi.org/10.1007/s00382-023-06934-0

[8] Giannini, A., Saravanan, R., Chang, P., 2003. Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science. 302, 1027–1030. DOI: https://doi.org/10.1126/science.1089357

[9] Olusegun, C.F., Awe, O., Ijila, I., et al., 2022. Evaluation of dry and wet spell events over West Africa using CORDEX-CORE regional climate models. Modeling Earth Systems and Environment. 8, 4923–4937. DOI: https://doi.org/10.1007/s40808-022-01423-5

[10] Ilori, O.W., Adeyewa, D.Z., 2025. Description of local features associated with wet and dry spell events over Guinea Coast of West Africa. Atmospheric Research. 323, 108181. DOI: https://doi.org/10.1016/j.atmosres.2025.108181

[11] Wainwright, C.M., Black, E., Allan, R.P., 2021. Future changes in wet and dry season characteristics in CMIP5 and CMIP6 simulations. Journal of Hydrometeorology. 22(9), 2339–2357. DOI: https://doi.org/10.1175/JHM-D-21-0017.1

[12] Donat, M.G., Lowry, A.L., Alexander, L.V., et al., 2016. More Extreme Precipitation in the World's Dry and Wet Regions. Nature Climate Change. 6, 508–513. DOI: https://doi.org/10.1038/nclimate2941

[13] Akobé, E.Y., Diawara, A., Yoroba, F., et al., 2024. Trends in the Occurrence of Compound Extremes of Temperature and Precipitation in Côte d'Ivoire. Atmosphere. 16(1), 3. DOI: https://doi.org/10.3390/atmos16010003

[14] Konate, D., Didi, S.R., Dje, K.B., et al., 2023. Observed changes in rainfall and characteristics of extreme events in Côte d'Ivoire (West Africa). Hydrology. 10(5), 104. DOI: https://doi.org/10.3390/hydrology10050104

[15] Ilori, O.W., Balogun, I.A., 2022. Evaluating the performance of new CORDEX-Africa regional climate models in simulating West African rainfall. Modeling Earth Systems and Environment. 8, 665–688. DOI: https://doi.org/10.1007/s40808-021-01084-w

[16] Panthou, G., Lebel, T., Vischel, T., et al., 2018. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environmental Research Letters. 13(6), 064013. DOI: https://doi.org/10.1088/1748-9326/aac334

[17] Nikulin, G., Jones, C., Giorgi, F., et al., 2012. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. Journal of Climate. 25, 6057–6078. DOI: https://doi.org/10.1175/JCLI-D-11-00375.1

[18] Alexander, L.V., Zhang, X., Peterson, T.C., et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres. 111(D5), D05109. DOI: https://doi.org/10.1029/2005JD006290

[19] Dosio, A., Jones, R.G., Jack, C., et al., 2020. What Can We Know about Future Precipitation in Africa? Robustness, Uncertainties and Added Value of Convection-Permitting Models. Climate Dynamics. 53, 5833–5858. DOI: https://doi.org/10.1007/s00382-019-04900-3

[20] Chen, M., Shi, W., Xie, P., et al., 2008. Assessing Objective Techniques for Gauge-Based Analyses of Global Daily Precipitation. Journal of Geophysical Research. 113(D4), D04110. DOI: https://doi.org/10.1029/2007JD009132

[21] Huth, R., 2000. A circulation classification scheme applicable in GCM studies. Theoretical and Applied Climatology. 67, 1–18. DOI: https://doi.org/10.1023/A:1005633925903

[22] Tamoffo, A.T., Dosio, A., Amekudzi, L.K., et al., 2023. Process-oriented evaluation of the West African Monsoon system in CORDEX-CORE regional climate models. Climate Dynamics. 60, 3187–3210. DOI: https://doi.org/10.1007/s00382-022-06502-y

[23] Trisos, C.H., Adelekan, I.O., Totin, E., et al., 2022. Chapter 9: Africa. In: Pörtner, H.-O., Roberts, D.C., Tignor, M., et al. (Eds.). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA. pp. 1285–1455. DOI: https://doi.org/10.1017/9781009325844.011

[24] Joly, M., Voldoire, A., 2009. Influence of ENSO on the West African Monsoon: Temporal Aspects and Atmospheric Processes. Journal of Climate. 22, 3193–3210. DOI: https://doi.org/10.1175/2008JCLI2450.1

[25] Yapo, A.L.M., Kouassi, B.K., Diawara, A., et al., 2023. Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations. Atmosphere. 14(10), 1582. DOI: https://doi.org/10.3390/atmos14101582

[26] Seneviratne, S.I., Zhang, X., Adnan, M., et al., 2021. Chapter 11: Weather and Climate Extreme Events in a Changing Climate. In: Masson-Delmotte, V., Zhai, P., Pirani, A., et al. (Eds.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA. pp. 1513–1766. DOI: https://doi.org/10.1017/9781009157896.013

[27] Taylor, K.E., 2001. Summarizing Multiple Aspects of Model Performance in a Single Diagram. Journal of Geophysical Research: Atmospheres. 106(D7), 7183–7192. DOI: https://doi.org/10.1029/2000JD900719

[28] Szentimrey, T., Faragó, T., Szalai, S., 1992. Window technique for climate trend analysis. Climate Dynamics. 6, 127–134. DOI: https://doi.org/10.1007/BF00193524

[29] Mann, H.B., 1945. Nonparametric Tests against Trend. Econometrica. 13(3), 245–259. DOI: https://doi.org/10.2307/1907187

[30] Kendall, M.G., 1975. Rank Correlation Methods, 4th ed. Charles Griffin: London, UK.

[31] Yue, S., Wang, C.Y., 2004. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resources Management. 18, 201–218. DOI: https://doi.org/10.1023/B:WARM.0000043140.61082.60

[32] Pettitt, A.N., 1979. A Non-Parametric Approach to the Change-Point Problem. Journal of the Royal Statistical Society: Series C (Applied Statistics). 28(2), 126–135. DOI: https://doi.org/10.2307/2346729

[33] Folland, C.K., Palmer, T.N., Parker, D.E., 1986. Sahel Rainfall and Worldwide Sea Temperatures, 1901–85. Nature. 320, 602–607. DOI: https://doi.org/10.1038/320602a0

[34] Fontaine, B., Janicot, S., Moron, V., 1995. Rainfall Anomaly Patterns and Wind Field Signals over West Africa in August (1958–1989). Journal of Climate. 8(6), 1503–1510. DOI: https://doi.org/10.1175/1520-0442(1995)008%3C1503:RAPAWF%3E2.0.CO;2

[35] Rodríguez-Fonseca, B., Janicot, S., Mohino, E., et al., 2011. Interannual and Decadal SST-Forced Responses of the West African Monsoon. Atmospheric Science Letters. 12, 67–74. DOI: https://doi.org/10.1002/asl.308

[36] Fitzpatrick, R.G.J., Bain, C.L., Knippertz, P., et al., 2015. The West African Monsoon Onset: A Concise Comparison of Definitions. Journal of Climate. 28(22), 8673–8694. DOI: https://doi.org/10.1175/JCLI-D-15-0265.1

[37] Chen, B., Zhang, L., Wang, C., 2024. Distinct Impacts of the Central and Eastern Atlantic Niño on the European Climate. Geophysical Research Letters. 51(2), e2023GL107012. DOI: https://doi.org/10.1029/2023GL107012

[38] Kendon, E.J., Ban, N., Roberts, N.M., et al., 2017. Do Convection-Permitting Regional Climate Models Improve Projections of Future Precipitation Change? Bulletin of the American Meteorological Society. 98(1), 79–93. DOI: https://doi.org/10.1175/BAMS-D-15-0004.1

[39] Kalognomou, E.-A., Lennard, C., Shongwe, M., et al., 2013. A Diagnostic Evaluation of Precipitation in CORDEX Simulations over Southern Africa. Journal of Climate. 26(23), 9477–9506. DOI: https://doi.org/10.1175/JCLI-D-12-00703.1

[40] Richter, I., Tokinaga, H., Li, T., 2021. Revisiting the Tropical Atlantic Influence on El Niño-Southern Oscillation. Journal of Climate. 34(21), 8533–8548. DOI: https://doi.org/10.1175/JCLI-D-21-0088.1

Downloads

How to Cite

Todzo, S., Akobé, Élisée Y., Diawara, A., Diba, I., Yapo, A. L. M., Fotso-Nguemo, T. C., Kouassi, B., Yoroba, F., & Diedhiou, A. (2026). Projected Changes in the Characteristics of Dry and Wet Episodes over Côte d’Ivoire. Journal of Atmospheric Science Research, 9(1), 80–94. https://doi.org/10.30564/jasr.v9i1.12989

Issue

Article Type

ARTICLE