Processing of Rainfall Time Series Data in the State of Rio de Janeiro

Authors

  • Givanildo de Gois Federal University of Rondônia Foundation (UNIR), Porto Velho, Rondônia, 76801-059, Brazil
  • José Francisco de Oliveira-Júnior Applied Meteorology and Environment Laboratory (LAMMA), Institute of Atmospheric Sciences (ICAT), Federal University of Alagoas (UFAL), Maceió, Alagoas, 57072-900, Brazil

DOI:

https://doi.org/10.30564/jasr.v4i4.3603

Abstract

The goal was to perform the filling, consistency and processing of the rainfall time series data from 1943 to 2013 in five regions of the state. Data were obtained from several sources (ANA, CPRM, INMET, SERLA and LIGHT), totaling 23 stations. The time series (raw data) showed failures that were filled with data from TRMM satellite via 3B43 product, and with the climatological normal from INMET. The 3B43 product was used from 1998 to 2013 and the climatological normal over the 1947- 1997 period. Data were submitted to descriptive and exploratory analysis, parametric tests (Shapiro-Wilks and Bartlett), cluster analysis (CA), and data processing (Box Cox) in the 23 stations. Descriptive analysis of the raw data consistency showed a probability of occurrence above 75% (high time variability). Through the CA, two homogeneous rainfall groups (G1 and G2) were defined. The group G1 and G2 represent 77.01% and 22.99% of the rainfall occurring in SRJ, respectively. Box Cox Processing was effective in stabilizing the normality of the residuals and homogeneity of variance of the monthly rainfall time series of the five regions of the state. Data from 3B43 product and the climatological normal can be used as an alternative source of quality data for gap filling.

Keywords:

Data validation; Parametric tests; Cluster analysis

References

[1] IPCC - Intergovernmental Panel on Climate Change (2007). Climate Change 2007: The Physical Science Basis. Summary for Policymakers Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 18 pp.

[2] Tammets, T., Jaagus J. Climatology of precipitation extremes in Estonia using the method of moving precipitation totals. Theoretical and Applied Climatology, 111, 3-4, 623-639, 2013. https://doi.org/10.1007/s00704-012-0691-1

[3] Nadarajah, S., Choi, D. Maximum daily rainfall in South Korea. Journal of Earth System Science, 116, 4, 311-320, 2007. https://doi.org/10.1007/s12040-007-0028-0

[4] Oliveira-Júnior, J.F., Delgado, R.C., Gois, G., Lannes, A., Dias, F.O., Souza, J.C.S., Souza, M. Análise da Precipitação e sua Relação com Sistemas Meteorológicos em Seropédica, Rio de Janeiro. Floresta e Ambiente, 21, 2, 140-149, 2014. DOI: https://doi.org/10.4322/floram.2014.03

[5] Westra, S., Alexaqnder, L.V., Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26, 11, 3903-3918, 2013. https://doi.org/10.1175/JCLI-D-12-00502.1

[6] Reboita, M.S., Gan, M. A, Rocha, R.P., Ambrizzi, T. Regimes de Precipitação na América do Sul: Uma Revisão Bibliográfica. Revista Brasileira de Meteorologia, 25, 2, 185-204, 2010. https://doi.org/10.1590/S0102-77862010000200004

[7] Brito, T.T., Oliveira-Júnior, J.F., Lyra, G.B., Gois, G., Zeri, M. Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorology and Atmospheric Physics, 129, 2, 469-478, 2016. https://doi.org/10.1007/s00703-016-0481-x

[8] Dereczynski, C.P., Oliveira, J.S., Machado, C.O. Climatologia da Precipitação no Município do Rio de Janeiro. Revista Brasileira de Meteorologia, 24, 1, 24-38, 2009. https://doi.org/10.1590/S0102-77862009000100003

[9] André, R.G.B., Marques, V.S., Pinheiro, F.M.A., Ferraudo, A.S. Identificação de regiões pluviometricamente homogêneas no estado do Rio de Janeiro, utilizando-se valores mensais. Revista Brasileira de Meteorologia, 23, 501-509, 2008. https://doi.org/10.1590/S0102-77862008000400009

[10] Satyamurty, P., Mattos, L.F., Nobre, C.A., Silva Dias, P.L. Tropics - South America. In: Meteorology of the Southern Hemisphere. Ed. Kauly, D. J. and Vincent, D. G., Meteorological Monograph. American Meteorological Society, Boston, 119-139, 1998.

[11] Cataldi, M., Assad, L.P.F., Torres Júnior, A.R, Alves, J.L.D. Estudo da influência das anomalias da TSM do Atlântico Sul extratropical na região da Confluência Brasil-Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Revista Brasileira de Meteorologia, 25, 513-524, 2010. https://doi.org/10.1590/S0102-77862010000400010

[12] Lima, A.O., Lyra, G.B., Moraes, M., Oliveira-Júnior, J.F., Zeri, M., Cunha-Zeri, G. Extreme rainfall events over Rio de Janeiro State, Brazil: characterization using probability distribution functions and clustering analysis. Atmospheric Research, 247,1-105221, 2021. https://doi.org/10.1016/j.atmosres.2020.105221

[13] Cruz, E., Carvalho, D.F., Ceddia, M.B., Antunes, M.A.H., Aquino, R.M. Ocorrência de Veranicos no Estado do Rio de Janeiro. Revista de Engenharia Agrícola de Jaboticabal, 24, 1, 68-79, 2004. https://doi.org/10.1590/S0100-69162004000100009

[14] Moraes, N.O., Pimentel, L.C.G., Marton, E. Simulações Numéricas da Formação de Ilha de Calor na Região Metropolitana do Rio de Janeiro. Anuário do Instituto de Geociências (Rio de Janeiro), 28, 2, 116- 138, 2005. https://doi.org/10.11137/2005_2_116-138

[15] Zeri, M., Oliveira-Júnior, J.F., Lyra, G.B. Spatiotemporal analysis of particulate matter, sulfur dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteorology and Atmospheric Physics, 113: 139-152, 2011. https://doi.org/10.1007/s00703-011-0153-9

[16] Oliveira-Júnior, J.F., Gois, G, Terassi, P.M.B., Silva Junior, C.A., Blanco, C.J.C., Sobral, B.S., Gasparini, K.A.C. Drought severity based on the SPI index and its relation to the ENSO and PDO climatic variability modes in the regions North and Northwest of the State of Rio de Janeiro - Brazil. Atmospheric Research, 212, 91-105, 2018. https://doi.org/10.1016/j.atmosres.2018.04.022

[17] Serra, A.B., Ratisbonna, L. Clima do Rio de Janeiro. Ministério da Agricultura. Serviço de meteorologia, 2ª edição. Boletim Geográfico, Fundação Instituto Brasileiro de Geografia (IBGE), nº 214, p. 135, 1957.

[18] Strang, D. Considerações sobre as chuvas de janeiro de 1962 no Estado da Guanabara. Escritório de Meteorologia, 16p, 1962.

[19] Serra, A. B. Clima da Guanabara. Boletim Geográfico, Fundação Instituto Brasileiro de Geografia (IBGE), nº 214, p. 35, 1970.

[20] Machado, R.L., Ceddia, M.B., Carvalho, D.F., Cruz, E. S., Francelino, M.R. Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil. Bragantia, 69, suppl., 77-84, 2010. https://doi.org/10.1590/S0006-87052010000500009

[21] IBGE-Instituto Brasileiro de Geografia e Estatística. IBGE, Diretoria de Pesquisas, Coordenação de Trabalho e Rendimento, Pesquisa Nacional por Amostra de Domicílios Contínua 2014. Available in: < http://www.ibge.gov.br/estadosat/perfil.php?sigla=rj>. Accessed in 20 jul. 2015.

[22] Costa, C.D. Variabilidade Intranual da Precipitação Pluvial Mensal no Estado do Rio de Janeiro. Monografia (Graduação em Engenharia Florestal). Curso de Engenharia de Florestal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 42p., 2010.

[23] R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.2005

[24] Schlotzhaver, S.D., Littell R.C. SAS System for elementary statistical analysis. 2ª ed. Cary, NC: SAS Institute Inc., p.456, 1999.

[25] Bartlett, M.S. Properties of sufficiency and statistical tests. Processings of the Royal Society, Series A, 160: 268–282, 1937. https://jstor.org/stable/96803

[26] Snedecor, G., Cochran, W., William, G. Statistical Methods (8th Ed.). Ames, Iowa: Blackwell Publishing Professional. ISBN 978-0-8138-1561-9, 1989. Retrieved 2011-08-05.

[27] Box, G.E.P., Cox D. R. An analysis of processings. Journal of the Royal Statistical Society, Series B, 26: 211-252, 1964.

[28] Shapiro, S.S., Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 1, 591-611, 1965.

[29] Ward, J.H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 1, 236-244, 1963. https://doi.org/10.1080/01621459.1963.10500845

[30] Everitt, B.S., Dunn, G. Applied multivariate analysis. London: Edward Arnold, 400p, 1991.

[31] Lyra, G.B., Oliveira-Júnior, J.F., Zeri, M. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34, 13, 3546-3558, 2014. https://doi.org/10.1002/joc.3926

[32] Kubrusly, L.S. Um procedimento para calcular índices a partir de uma base de dados multivariados. Pesquisa Operacional, 21, 1, 107-117, 2001. https://doi.org/10.1590/S0101-74382001000100007

[33] Atlas Eólico do Rio de Janeiro. Governo do Estado do Rio de Janeiro, Secretaria de Estado de Energia, da Indústria Naval e do Petróleo, 2002.

[34] Correia Filho, W.L.F., Souza, P.H.A., Oliveira-Júnior, J.F., Terassi, P.M.B., Gois, G., Silva Junior, C.A., Sobral, B.S., Rangel, R.H.O., Pimentel, L.C.G. Investigating the characteristics and predictability of measured wind speed data over Rio de Janeiro, Brazil. Pure And Applied Geophysics, 1, 1-23, 2021. https://doi.org/10.1007/s00024-021-02751-w

[35] Lemos, C. F., Calbete, N. Sistemas Frontais que atuaram no litoral de 1987-1995. Climanalise Especial-Edição comemorativa de 10 anos. MCT/INPE/CPTEC, 1996.

[36] Ferreira, N. J., Sanches, M., Silva Dias, M.A.F. Composição da Zona de Convergência do Atlântico Sul em Períodos de El Niño e La Niña. Revista Brasileira de Meteorologia, 19, 89-98, 2004.

[37] Mello, C.R., Viola, M.R, Curi, N., Silva, A.M. Distribuição Espacial da Precipitação e da Erosividade da Chuva Mensal e Anual no Estado do Espírito Santo. Revista Brasileira de Ciência do Solo, 36, 6, 1878-1891, 2012. https://doi.org/10.1590/S0100-06832012000600022

[38] Yazici, B., Yolacan, S. A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77, 2, 175-183, 2007. https://doi.org/10.1080/10629360600678310

[39] Romão, X., Delgado, R., Costa, A. An empirical power comparison of univariate goodness-of-fit of normality. Journal of Statistical Computation and Simulation, 80, 5, 545-591, 2010. https://doi.org/10.1080/00949650902740824

[40] Torman, V.B.L., Coster, R., Riboldi, J. Normalidade de variáveis: métodos de verificação e comparação de alguns testes não-paramétricos por simulação. Revista Hospital das Clínicas Paraná, 32, 2, 227-234, 2012.

[41] Pereira, M.A.F., Kobiyama, M. Análise de variâncias pluviométricas na região da bacia hidrográfica do Cubatão do Sul (SC). Ambiência (Online), 9, 1, 95-111, 2013. https://doi.org/10.5777/ambiencia.2013.01.07

Downloads

How to Cite

de Gois, G., & de Oliveira-Júnior, J. F. (2021). Processing of Rainfall Time Series Data in the State of Rio de Janeiro. Journal of Atmospheric Science Research, 4(4), 19–35. https://doi.org/10.30564/jasr.v4i4.3603

Issue

Article Type

Article