-
408
-
309
-
280
-
237
-
229
Seasonal Remote-Sensing Observations of Aerosol-Cloud Relationships under Varied Water Vapor Conditions
DOI:
https://doi.org/10.30564/jasr.v8i3.9528Abstract
Understanding the aerosol-cloud relationship is critical for reducing uncertainties in climate projections, especially over regions that experience complex aerosol dynamics from both natural and anthropogenic sources. This study aims to investigate how aerosols influence cloud properties under varying water vapor conditions over nine urban and rural subregions of the Eastern Mediterranean, disentangling the seasonal and annual relationships between aerosols and cloud parameters while distinguishing the effects of different aerosol types. For this purpose, Aerosol Optical Depth (AOD) at 550 nm, Water Vapor (WV) under clear-sky conditions, Cloud Cover (CC), Cloud Optical Depth (COD), and Cloud Top Pressure (CTP) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Aqua satellite, for the time period July 2002-December 2012. Additionally, anthropogenic (AODanthr) and dust AOD (AODdust) datasets, constructed through a synergy of satellite observations, chemical transport modeling, and reanalysis products were utilised. Our results reveal consistent increases in CC with increasing total, anthropogenic, and dust aerosol loading across all regions, seasons, and water vapor levels, supporting the hypothesis of aerosol-induced cloud invigoration. COD was found to increase with AOD when AOD < 0.5 but remain steady or decline for higher AOD levels, independent of water vapor concentration. Furthermore, anthropogenic aerosols tend to enhance COD more strongly than dust aerosols. Seasonal differences in cloud height were also observed: in spring and summer, CTP decreases (indicating higher cloud tops) with increasing AOD and CC, while in autumn and winter, under high water vapor conditions, aerosol loading leads to higher clouds.
Keywords:
Aerosols; Clouds; Water Vapor; Eastern Mediterranean; Cloud HeightReferences
[1] Koren, I., Kaufman, Y.J., Rosenfeld, D., et al., 2005. Aerosol Invigoration and Restructuring of Atlantic Convective Clouds. Geophysical Research Letters. 32(14). DOI: https://doi.org/10.1029/2005GL023187
[2] Kourtidis, K., Stathopoulos, S., Georgoulias, A.K., et al., 2015. A Study of the Impact of Synoptic Weather Conditions and Water Vapor on Aerosol-Cloud Relationships over Major Urban Clusters of China. Atmospheric Chemistry and Physics. 15, 10955–10964. DOI: https://doi.org/10.5194/acp-15-10955-2015
[3] Liu, Y., de Leeuw, G., Kerminen, V.-M., et al., 2017. Analysis of Aerosol Effects on Warm Clouds over the Yangtze River Delta from Multi-Sensor Satellite Observations. Atmospheric Chemistry and Physics. 17, 5623–5641. DOI: https://doi.org/10.5194/acp-17-5623-2017
[4] Sena, E.T., McComiskey, A., Feingold, G., 2016. A Long-Term Study of Aerosol–Cloud Interactions and Their Radiative Effect at the Southern Great Plains Using Ground-Based Measurements. Atmospheric Chemistry and Physics. 16, 11301–11318. DOI: https://doi.org/10.5194/acp-16-11301-2016
[5] Twomey, S., 2007. Pollution and the Planetary Albedo. Atmospheric Environment. 41, 120–125. DOI: https://doi.org/10.1016/j.atmosenv.2007.10.062
[6] Albrecht, B.A., 1989. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science. 245, 1227–1230. DOI: https://doi.org/10.1126/science.245.4923.1227
[7] Ackerman, A.S., Toon, O.B., Stevens, D.E., et al., 2000. Reduction of Tropical Cloudiness by Soot. Science. 288, 1042–1047. DOI: https://doi.org/10.1126/science.288.5468.1042
[8] Johnson, B.T., Shine, K.P., Forster, P.M., 2004. The Semi-Direct Aerosol Effect: Impact of Absorbing Aerosols on Marine Stratocumulus. Quarterly Journal of the Royal Meteorological Society. 130, 1407–1422. DOI: https://doi.org/10.1256/qj.03.61
[9] Koch, D., Del Genio, A.D., 2010. Black Carbon Semi-Direct Effects on Cloud Cover: Review and Synthesis. Atmospheric Chemistry and Physics. 10, 7685–7696. DOI: https://doi.org/10.5194/acp-10-7685-2010
[10] Hatzianastassiou, N., Gkikas, A., Mihalopoulos, N., et al., 2009. Natural versus Anthropogenic Aerosols in the Eastern Mediterranean Basin Derived from Multiyear TOMS and MODIS Satellite Data. Journal of Geophysical Research: Atmospheres. 114. DOI: https://doi.org/10.1029/2009JD011982
[11] Lelieveld, J., Berresheim, H., Borrmann, S., et al., 2002. Global Air Pollution Crossroads over the Mediterranean. Science. 298, 794–799. DOI: https://doi.org/10.1126/science.1075457
[12] Mihalopoulos, N., Stephanou, E., Kanakidou, M., et al., 1997. Tropospheric Aerosol Ionic Composition in the Eastern Mediterranean Region. Tellus Series B. 49, 314–326. DOI: https://doi.org/10.1034/j.1600-0889.49.issue3.7.x
[13] Georgoulias, A.K., Alexandri, G., Kourtidis, K.A., et al., 2016. Differences between the MODIS Collection 6 and 5.1 Aerosol Datasets over the Greater Mediterranean Region. Atmospheric Environment. 147, 310–319. DOI: https://doi.org/10.1016/j.atmosenv.2016.10.014
[14] Georgoulias, A.K., Alexandri, G., Kourtidis, K.A., et al., 2016. Spatiotemporal Variability and Contribution of Different Aerosol Types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmospheric Chemistry and Physics. 16, 13853–13884. DOI: https://doi.org/10.5194/acp-16-13853-2016
[15] Kanakidou, M., Mihalopoulos, N., Kindap, T., et al., 2011. Megacities as Hot Spots of Air Pollution in the East Mediterranean. Atmospheric Environment. 45, 1223–1235. DOI: https://doi.org/10.1016/j.atmosenv.2010.11.048
[16] Papadimas, C.D., Hatzianastassiou, N., Mihalopoulos, N., et al., 2008. Spatial and Temporal Variability in Aerosol Properties over the Mediterranean Basin Based on 6-Year (2000–2006) MODIS Data. Journal of Geophysical Research. 113, D11205. DOI: https://doi.org/10.1029/2007JD009189
[17] Harikishan, G., Padmakumari, B., Maheskumar, R.S., et al., 2015. Radiative Effect of Dust Aerosols on Cloud Microphysics and Meso-Scale Dynamics during Monsoon Breaks over Arabian Sea. Atmospheric Environment. 105, 22–31. DOI: https://doi.org/10.1016/j.atmosenv.2015.01.037
[18] Tutsak, E., Koçak, M., 2020. Optical and Microphysical Properties of the Columnar Aerosol Burden over the Eastern Mediterranean: Discrimination of Aerosol Types. Atmospheric Environment. 229, 117463. DOI: https://doi.org/10.1016/j.atmosenv.2020.117463
[19] Balis, D.S., Amiridis, V., Zerefos, C., et al., 2003. Raman Lidar and Sunphotometric Measurements of Aerosol Optical Properties over Thessaloniki, Greece during a Biomass Burning Episode. Atmospheric Environment. 37, 4529–4538. DOI: https://doi.org/10.1016/S1352-2310(03)00581-8
[20] Meloni, D., di Sarra, A., Pace, G., et al., 2006. Aerosol Optical Properties at Lampedusa (Central Mediterranean). 2. Determination of Single Scattering Albedo at Two Wavelengths for Different Aerosol Types. Atmospheric Chemistry and Physics. 6, 715–727. DOI: https://doi.org/10.5194/acp-6-715-2006
[21] Pace, G., di Sarra, A., Meloni, D., et al., 2006. Aerosol Optical Properties at Lampedusa (Central Mediterranean). 1. Influence of Transport and Identification of Different Aerosol Types. Atmospheric Chemistry and Physics. 6, 697–713. DOI: https://doi.org/10.5194/acp-6-697-2006
[22] Methymaki, G., Bossioli, E., Boucouvala, D., et al., 2023. Brown Carbon Absorption in the Mediterranean Basin from Local and Long-Range Transported Biomass Burning Air Masses. Atmospheric Environment. 306, 119822. DOI: https://doi.org/10.1016/j.atmosenv.2023.119822
[23] Kalivitis, N., Gerasopoulos, E., Vrekoussis, M., et al., 2007. Dust Transport over the Eastern Mediterranean Derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and Surface Measurements. Journal of Geophysical Research: Atmospheres. 112, 1–9. DOI: https://doi.org/10.1029/2006JD007510
[24] Stathopoulos, S., Georgoulias, A.K., Kourtidis, K., 2017. Space-Borne Observations of Aerosol - Cloud Relations for Cloud Systems of Different Heights. Atmospheric Research. 183, 191–201. DOI: https://doi.org/10.1016/j.atmosres.2016.09.005
[25] Amiridis, V., Giannakaki, E., Balis, D.S., et al., 2010. Smoke Injection Heights from Agricultural Burning in Eastern Europe as Seen by CALIPSO. Atmospheric Chemistry and Physics. 10, 11567–11576. DOI: https://doi.org/10.5194/acp-10-11567-2010
[26] Levy, R.C., Remer, L.A., Dubovik, O., 2007. Global Aerosol Optical Properties and Application to Moderate Resolution Imaging Spectroradiometer Aerosol Retrieval over Land. Journal of Geophysical Research. 112, D13210. DOI: https://doi.org/10.1029/2006JD007815
[27] Chu, D.A., Kaufman, Y.J., Ichoku, C., et al., 2002. Validation of MODIS Aerosol Optical Depth Retrieval over Land. Geophysical Research Letters. 29, 8007. DOI: https://doi.org/10.1029/2001GL013205
[28] Levy, R.C., Remer, L.A., Kleidman, R.G., et al., 2010. Global Evaluation of the Collection 5 MODIS Dark-Target Aerosol Products over Land. Atmospheric Chemistry and Physics. 10, 10399–10420. DOI: https://doi.org/10.5194/acp-10-10399-2010
[29] Remer, L.A., Kaufman, Y.J., Tanré, D., et al., 2005. The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences. 62, 947–973. DOI: https://doi.org/10.1175/JAS3385.1
[30] Hsu, N.C., Tsay, S.C., King, M.D., et al., 2004. Aerosol Properties over Bright-Reflecting Source Regions. IEEE Transactions on Geoscience and Remote Sensing. 42, 557–569. DOI: https://doi.org/10.1109/TGRS.2004.824067
[31] Tanré, D., Kaufman, Y.J., Herman, M., et al., 1997. Remote Sensing of Aerosol Properties over Oceans Using the MODIS/EOS Spectral Radiances. Journal of Geophysical Research: Atmospheres. 102, 16971–16988. DOI: https://doi.org/10.1029/96jd03437
[32] Ackerman, S.A., Strabala, K.I., Menzel, W.P., et al., 1998. Discriminating Clear Sky from Clouds with MODIS. Journal of Geophysical Research: Atmospheres. 103, 32141–32157. DOI: https://doi.org/10.1029/1998JD200032
[33] King, M.D., Menzel, W.P., Kaufman, Y.J., et al., 2003. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS. IEEE Transactions on Geoscience and Remote Sensing. 41, 442–458. DOI: https://doi.org/10.1109/TGRS.2002.808226
[34] Platnick, S., King, M., Ackerman, S.A., et al., 2003. The MODIS Cloud Products: Algorithms and Examples from Terra. IEEE Transactions on Geoscience and Remote Sensing. 41, 459–473. DOI: https://doi.org/10.1109/TGRS.2002.808301
[35] Georgoulias, A.K., Zanis, P., Pöschl, U., et al., 2013. QUantifying the Aerosol Direct and Indirect Effect over Eastern Mediterranean from Satellites (QUADIEEMS): Overview and Preliminary Results. EGU General Assembly Conference Abstracts. pp. EGU2013-1348
[36] Herman, J.R., Bhartia, P.K., Torres, O., et al., 1997. Global Distribution of UV-Absorbing Aerosols from Nimbus 7/TOMS Data. Journal of Geophysical Research: Atmospheres. 102, 16911–16922. DOI: https://doi.org/10.1029/96jd03680
[37] Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., et al., 2006. The Ozone Monitoring Instrument. IEEE Transactions on Geoscience and Remote Sensing. 44, 1093–1101. DOI: https://doi.org/10.1109/TGRS.2006.872333
[38] Benedetti, A., Morcrette, J.J., Boucher, O., et al., 2009. Aerosol Analysis and Forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data Assimilation. Journal of Geophysical Research: Atmospheres. 114, 1–18. DOI: https://doi.org/10.1029/2008JD011115
[39] Dee, D.P., Uppala, S.M., Simmons, A.J., et al., 2011. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society. 137, 553–597. DOI: https://doi.org/10.1002/qj.828
[40] Mangold, A., De Backer, H., De Paepe, B., et al., 2011. Aerosol Analysis and Forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 3. Evaluation by Means of Case Studies. Journal of Geophysical Research: Atmospheres. 116, 1–23. DOI: https://doi.org/10.1029/2010JD014864
[41] Chin, M., Rood, R.B., Lin, S.J., et al., 2000. Atmospheric Sulfur Cycle Simulated in the Global Model GOCART: Model Description and Global Properties. Journal of Geophysical Research: Atmospheres. 105, 24671–24687. DOI: https://doi.org/10.1029/2000JD900384
[42] Gryspeerdt, E., Stier, P., Partridge, D.G., 2014. Satellite Observations of Cloud Regime Development: The Role of Aerosol Processes. Atmospheric Chemistry and Physics. 14, 1141–1158. DOI: https://doi.org/10.5194/acp-14-1141-2014
[43] Costantino, L., Bréon, F.M., 2013. Aerosol Indirect Effect on Warm Clouds over South-East Atlantic, from Co-Located MODIS and CALIPSO Observations. Atmospheric Chemistry and Physics. 13, 69–88. DOI: https://doi.org/10.5194/acp-13-69-2013
[44] Ghan, S.J., Guzman, G., Abdul-Razzak, H., 1998. Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei. Journal of the Atmospheric Sciences. 55, 3340–3347. DOI: https://doi.org/10.1175/1520-0469(1998)055<3340:CBSSAS>2.0.CO;2
[45] Feingold, G., Remer, L.A., Ramaprasad, J., et al., 2001. Analysis of Smoke Impact on Clouds in Brazilian Biomass Burning Regions: An Extension of Twomey’s Approach. Journal of Geophysical Research. 106, 22907. DOI: https://doi.org/10.1029/2001JD000732
[46] Peng, J., Li, Z., Zhang, H., et al., 2016. Systematic Changes in Cloud Radiative Forcing with Aerosol Loading for Deep Clouds in the Tropics. Journal of the Atmospheric Sciences. 73, 231–249. DOI: https://doi.org/10.1175/JAS-D-15-0080.1
[47] Khain, A., Rosenfeld, D., Pokrovsky, A., 2005. Aerosol Impact on the Dynamics and Microphysics of Deep Convective Clouds. Quarterly Journal of the Royal Meteorological Society. 131, 2639–2663. DOI: https://doi.org/10.1256/qj.04.62
[48] Rosenfeld, D., Lohmann, U., Raga, G.B., et al., 2008. Flood or Drought: How Do Aerosols Affect Precipitation? Science (80). 321, 1309–1313. DOI: https://doi.org/10.1126/science.1160606
[49] Alexandri, G., Georgoulias, A.K., Meleti, C., et al., 2017. A High Resolution Satellite View of Surface Solar Radiation over the Climatically Sensitive Region of Eastern Mediterranean. Atmospheric Research. 188, 107–121. DOI: https://doi.org/10.1016/j.atmosres.2016.12.015
[50] Livingston, J.M., Russell, P.B., Reid, J.S., et al., 2003. Airborne Sun Photometer Measurements of Aerosol Optical Depth and Columnar Water Vapor during the Puerto Rico Dust Experiment and Comparison with Land, Aircraft, and Satellite Measurements. Journal of Geophysical Research. 108, 8588. DOI: https://doi.org/10.1029/2002JD002520
[51] Jin, M., Shepherd, J.M., 2008. Aerosol Relationships to Warm Season Clouds and Rainfall at Monthly Scales over East China: Urban Land versus Ocean. Journal of Geophysical Research. 113, D24S90. DOI: https://doi.org/10.1029/2008JD010276
[52] Tao, W.K., Chen, J.P., Li, Z., et al., 2012. Impact of Aerosols on Convective Clouds and Precipitation. Reviews of Geophysics. 50. DOI: https://doi.org/10.1029/2011RG000369
[53] Wang, F., Guo, J., Zhang, J., et al., 2015. Multi-Sensor Quantification of Aerosol-Induced Variability in Warm Clouds over Eastern China. Atmospheric Environment. 113, 1–9. DOI: https://doi.org/10.1016/j.atmosenv.2015.04.063
[54] Alam, K., Khan, R., Blaschke, T., et al., 2014. Variability of Aerosol Optical Depth and Their Impact on Cloud Properties in Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics. 107, 104–112. DOI: https://doi.org/10.1016/j.jastp.2013.11.012
[55] Tripathi, S.N., Pattnaik, A., Dey, S., 2007. Aerosol Indirect Effect over Indo-Gangetic Plain. Atmospheric Environment. 41, 7037–7047. DOI: https://doi.org/10.1016/j.atmosenv.2007.05.007
[56] Saponaro, G., Kolmonen, P., Sogacheva, L., et al., 2017. Estimates of the Aerosol Indirect Effect over the Baltic Sea Region Derived from 12 Years of MODIS Observations. Atmospheric Chemistry and Physics. 17, 3133–3143. DOI: https://doi.org/10.5194/acp-17-3133-2017
[57] Fan, J., Yuan, T., Comstock, J.M., et al., 2009. Dominant Role by Vertical Wind Shear in Regulating Aerosol Effects on Deep Convective Clouds. Journal of Geophysical Research: Atmospheres. 114. DOI: https://doi.org/10.1029/2009JD012352
[58] Ten Hoeve, J.E., Remer, L.A., Jacobson, M.Z., 2011. Microphysical and Radiative Effects of Aerosols on Warm Clouds during the Amazon Biomass Burning Season as Observed by MODIS: Impacts of Water Vapor and Land Cover. Atmospheric Chemistry and Physics. 11, 3021–3036. DOI: https://doi.org/10.5194/acp-11-3021-2011
[59] Myhre, G., Stordal, F., Johnsrud, M., et al., 2007. Aerosol-Cloud Interaction Inferred from MODIS Satellite Data and Global Aerosol Models. Atmospheric Chemistry and Physics. 7, 3081–3101. DOI: https://doi.org/10.5194/acp-7-3081-2007
[60] Small, J.D., Jiang, J.H., Su, H., et al., 2011. Relationship between Aerosol and Cloud Fraction over Australia. Geophysical Research Letters. 38, 1–7. DOI: https://doi.org/10.1029/2011GL049404
[61] Yang, Q., Gustafson, W.I., Fast, J.D., et al., 2012. Impact of Natural and Anthropogenic Aerosols on Stratocumulus and Precipitation in the Southeast Pacific: A Regional Modelling Study Using WRF-Chem. Atmospheric Chemistry and Physics. 12, 8777–8796. DOI: https://doi.org/10.5194/acp-12-8777-2012
[62] Boreddy, S.K.R., Kawamura, K., Haque, M.M., 2015. Long-Term (2001–2012) Observation of the Modeled Hygroscopic Growth Factor of Remote Marine TSP Aerosols over the Western North Pacific: Impact of Long-Range Transport of Pollutants and Their Mixing States. Physical Chemistry Chemical Physics. 17, 29344–29353. DOI: https://doi.org/10.1039/C5CP05315C
[63] Titos, G., Burgos, M.A., Zieger, P., et al., 2021. A Global Study of Hygroscopicity-Driven Light-Scattering Enhancement in the Context of Other in Situ Aerosol Optical Properties. Atmospheric Chemistry and Physics. 21, 13031–13050. DOI: https://doi.org/10.5194/acp-21-13031-2021
[64] Remer, L.A., Tanré, D., Kaufman, Y.J., et al., 2002. Validation of MODIS Aerosol Retrieval over Ocean. Geophysical Research Letters. 29, MOD3-1–MOD3-4. DOI: https://doi.org/10.1029/2001GL013204
[65] Bellouin, N., Quaas, J., Morcrette, J.J., et al., 2013. Estimates of Aerosol Radiative Forcing from the MACC Re-Analysis. Atmospheric Chemistry and Physics. 13, 2045–2062. DOI: https://doi.org/10.5194/acp-13-2045-2013
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Stavros Stathopoulos, Konstantinos Kourtidis, Alexandra Gemitzi

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.