Sensitivity Analysis Of Geographical River Boundary Layers


  • Levent Yilmaz

    Hydraulics Division, Nisantasi University, Turkey



Bank full discharge is generally considered to be the dominant steady flow which would generate the same regime channel  shape and dimensions as the natural sequences of flows would.  This is because investigation on the magnitude and frequency of sediment transport have determined that for stable rivers the flow which in the longer term transports most material has the same frequency of occurrence as bankfull flow.  For stable gravel-bed rivers, this is considered to be the 1.5-year flood.


River; Boundary layers; Sensitivity analysis; Regime


[1] Ackers, P. Experiments on small streams in alluvium. Journal of the Hydraulics Division, Proc. ASCE, 1964, 90 (HY4): 1 – 37.

[2] Ackers, P., and Charlton, F.G. Meander geometry arising from varying flows. Journal of Hydrology, 1970a, 11(3): 230-252.

[3] Ackers, P., and Charlton, F.G. The geometry of small meandering streams. Proc. of the Inst. of Civil Engineers, Supplement (xii), 1970b, 7328 S: 289-317.

[4] Ackers, P. and White, W. R. Sediment transport: new approach and analysis. Proc. Am. Soc. Civ. Engrs, J. Hydraul. Div., 1973, 99 (HY11): 2041-2060.

[5] ASCE Task Committee, Relationships between morphology of small streams and sediment yield. Proc. Am. Soc. Civ. Engrs, J. Hydraul. Div., 1982, 108 (HY11): 1328-1365.

[6] Ackers, P, and Charlton, F. G. The geometry of small meandering streams. Proc. Inst. Civ. Eng. 1970, 7328S Suppl.: 289-317.

[7] Ackers and Charlton, 1970 b.

[8] Andrews, 1984.

[9] Anderson, A. G. On the Development of Stream Meanders. Proc. XII. Congress IAHR, Fort Collins, U.S.A, 1967.

[10] Bagnold, R. A. Motion of Waves in Shallow Water, Interaction between Waves and Sand Bottoms. Proc. Roy. Soc., London, A 187, 1946: 1-18.

[11] Blench, T. Regime Behavior of Canals and Rivers. Butterworths, London, 1957: 138.

[12] Bray, D. I. Generalized regime-type analysis of Alberta rivers. Thesis presented to the University of Alberta at Edmonton, Canada in 1972 in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1972.

[13] Bray, 1973.

[14] Chang, H. H. Geometry of rivers in regime. Journal of the Hydraulics Division, ASCE, 1979, 105: 691-706.

[15] Chang, H. H. Stable alluvial canal design. Journal of the Hydraulics Division, ASCE, 1980a, 106: 873-891.

[16] Chang, H. H. Geometry of gravel streams. Journal of the Hydraulics Division, ASCE, 1980b, 106: 1443-1456.

[17] Chang, H. H. Downstream variations in the hydraulic geometry of streams: special emphasis on mean velocity. American Journal of Science, 1980, 267: 499-509.

[18] Chang, H. H. River morphology and thresholds. Journal of Hydraulic Engineering, ASCE, 1985, 111: 36-43.

[19] Hey, R. D. and Thorne, C. R. Stable channels with mobile gravel-beds. Proc. Am. Soc. Civ. Engrs., J. Hydraul. Engrg., 1986, 112(HY8): 671-689.

[20] Inglis, C. C. Meanders and Their Bearing on River Tarining. The Institute of Civil Engineers,1946: 1 – 23.

[21] Inglis, C. C. The behaviour and control of rivers and canals. Research Publication 13, Central Water Power, Irrigation and Navigation Research Station, Poona, India, 1949.

[22] Julien, P. Y. and Wargadalam, J. Alluvial channel geometry: theory and applications’, Journal of Hydraulic Engineering, ASCE, 1995, 121: 312-325.

[23] Lacey, G. Stable channels in alluvium. Proceedings, Institution of Civil Engineers, 1929-1930, 229: 259-384.

[24] Leopold, L. B., and Wolman, M. G. River Channel Patterns, Braided, Meandering and Straight. USGS Professional, 1957, 282-B: 45-62,

[25] Lindley, E. S. Regime Channels. Punjab Engineering Congress, Pakistan, 1919, 49.

[26] Chang, H.H. Fluvial processes in river engineering’; John Wiley & Sons, New York, 1988.Chang, H.H. Analysis of River Meanders. Journal of Hydraulic Engineering, 1984, 110(1).

[27] Chang, H. H. Energy Expenditure in Curved Open Channels. Journal of Hydraulic Engineering, ASCE, 1983, 109(7): 1012-1022.

[28] Chang, H. H. Geometry of Rivers in Regime. Journal of the Hydraulics Division, ASCE, 105(HY6), Proc. 1979, 14640: 691-706.

[29] Davies, T. R. H. Bedform Spacing and Flow Resistance. Journal of Hydraulic Division, Am. Soc. Civ. Engr., 1980, 106: 423-433.

[30] Dietrich, W. E., and Smith, J. D. Influence of the Point Bar on Flow Through Curved Channels. Water Resources Res., 1983, 19(5): 1173-1192.

[31] Einstein, H. A. Formulas for transportation of bed – load. Transactions, ASCE, 1942, 107: 561 – 575.

[32] Einstein, H. A., The Bed-load Function for Sediment Transportation in Open Channel Flows. Tech. Bull., U.S.D.A., Soil Conservation Service, 1950, 1026.

[33] Engelund, F., and Fredsoe, J. Sediment Transport Model for Straight Alluvial Channels. Nordic Hydrol, 1976, 7: 293-306.

[34] Engelund, F, and Hansen, E. A Monograph on Sediment Transport in Alluvial Streams. Technical Press, Copenhagen, 1967.

[35] Engelund, H., and Skovgaard, O. On the Origin of Meandering and Braiding in Alluvial Streams. Journal of Fluid Mechanics, London, England, 1973, 76(3): 457-480 .

[36] Ikeda, H. A Study on the Formation of Sand Bars in an Experimental Flume. Geographical Review of Japan, 1973, 46(7): 435-450, .

[37] Ikeda, S. Self-formed straight channels in sandy beds. Journal of the Hydraulics Division, ASCE, 1981, 107 (4): 389-406.

[38] Ikeda, S. Incipient motion of sand particles on side slope. J. Hydr. Div., ASCE, 1982, 108 (1): 95 – 114.

[39] Ikeda, S. Prediction of Alternate Bar Wavelength and Height. Journal of Hyd. Engineering, ASCE, 1984, 110(4).

[40] Ikeda, S. Role of lateral eddies in sediment transport and channel formation. River Sedimentation, Jayawardena, Lee and Wang, eds., Balkema, Rotterdam, 1999: 195-203.

[41] Kawahara, Y. and Tamai, N. Flow Computation at a river with hydraulic geometry. Proc. 43rd Annual Conf. of JSCE, 1988: 442 – 443.

[42] Keller, R. J. and Rodi, W. Prediction of Flow Characteristics in Main Channel /Flood Plain Flows. Journal of Hydraulic Research, ASCE, 1988, 26(4).

[43] Knight, D. W. and Demetriou, J. D. Floodplain and main channel flow interaction. J. Hydraul. Div., ASCE, 1983, 109 (8).

[44] Kellerhals, R. Stable channels with gravel-paved beds. ASCE Water Resources Engineering Conference, Reprint 330 , Denver, Colorado, 1967: 38.

[45] Knight, D. W., J. D. Abbott, and Cunge, H. Flood routing in channels with flood plains. Journal of Hydrology, 1979.

[46] Knight, D. W., and A. MacDonald. Sediment Processes, Chapter 3, in Flow and Sediment Interaction, Journal of the Hydraulics Division (Valentine, E. M., Wellington Airport extension model study), 1980, 32.

[47] Knight, D.W. Boundary shear in smooth and rough channels. J. Hydraul. Div., Am. Soc. Civ. Engrs., 1981, 107 (7): 839-851.

[48] Knight, D. W., Demetriou, J. D., Hamed, M. E. Discharge assessment for compound sections between straight reaches. River Flow 2006, Proceedings of the International Conference on River Flow, Authors: Rui, M. L. Ferreira, Elsa, C.T.L. Alves, 1984.

[49] Knight, D. W. and Hamed, M. E. Boundary Shear in Symmetric Compound Channels. Journal of Hydraulic Engineering, ASCE, 1984, 110 (18): 1412 – 1430.

[50] Knight, D. W. and Lai, C. J. Turbulent flow in compound channels and ducts. proc. 2nd International Symposium on Refined Flow Modelling and Turbulence, 1985,

[51] Knight, D. W. Turbulence measurements in a shear layer region of a compound channel,’ Journal of hydraulic Engineering, ASCE, 1987, 113 (6): 753-766.

[52] Knight, D. W. Hydraulics of flood channels. Floods: hydrological sedimentological and geomorphological implications (ed. By K. Beven and D. Carling), 1989.

[53] Knight, D. W., and Shiono, K., and Pirt, J. Prediction of depth mean velocity and discharge in natural rivers with overbank flow. Proc. Int. Conf. on Hydraulics and Environmental Modelling of Coastal, Estuarine and River Waters, Falconer, R. A., Goodwin, P., and Matthew, R. G. S., eds., Gower Publishing, 1989, 419-428.

[54] Knight, D. W., et al. Flow in compound channels. IAHR, monograph, IAHR, Madrid, Spain, 2002.

[55] Knight, D. W., and Shiono, K. Turbulence measurements in a shear layer region of a compound channel. Journal of hydraulic Research, IAHR, 1990, 28 (2): 141-156.

[56] Knight, D. W. ed. SERC Flood Channel Facility Experimental Data-Phase A. Report SR 314, HR Wallingford, Wallingford, UK, 1992.

[57] Knight, D.W., and Sellin, R.H.J. The SERC flood channel facility. Journal of the Institution of Water and Environmental Management, 1987, 1 (2): 198 – 204.

[58] Knight, D. W., and Shiono, K. River Channel and flood plain hydraulics. Flood Plain Processes, M. Anderson, P. Bates and D. Walling, eds., Wiley and Sons, 1998: 139-181.

[59] Krishnappan, G., and Lau, Y. Turbulence modeling of flood plain flows,’ Journal of Hydraulic Engineering, ASCE, 1986, 112 (4): 251 – 266.

[60] Lundgren, H., and Jonsson, I. G. Shear and velocity distribution in shallow channels. Journal of Hydraulic Engineering, 1964, 90: 1 – 21.

[61] Meyer – Peter, E. and Müller, R. Formulas for bed-load transport. Proc. 2nd Meeting Intl. Ass. Hydraul. Structures Res., Stockholm, Sweden, Appendix, 1948, 2: 39 - 64.

[62] Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed Part 2. The gravel river. J. Fluid Mech., 1978, 89 (1): 127 – 146.

[63] Parker, G. Hydraulic geometry of active gravel rivers’, Proc.Am. Soc. Civ. Engrs, J. Hydraul. Div., 1979, 105(HY9): 1185-1201.

[64] Pizzuto, J. E. The morphology of graded gravel rivers; a network perspective’, Geomorphology, 1992, 5: 457-474.

[65] Simon, D., and F. Senturk, Sediment Transport Technology. Amazon, Publisher: Water Resources Publication, Revised Edition, 1992.

[66] Shields, A. Anwendung der aehnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau, Heft 26, Berlin, Germany, 1936.

[67] Shiono, K., and D. W. Knighton, Biomonitoring and environmental management, (ed. River Channel and Floodplain Hydraulics ), 1990: 139-181.

[68] Shiono, K., and D. W. Knight. Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, Cambridge University Press, 1991, 222: 617-646.

[69] Singh, B. Self- adjustment of alluvial streams. Proc. 2nd International Symposium on River Sedimentation (Continuation), Nanjing, China, 1983: 295-303.

[70] Singh, V. P. On the theories of hydraulic geometry. International Journal of Sediment Resarch, 2003, 18(3): 196-218.

[71] Song, C. C. S.,and Yang, C. T. Velocity profiles and minimum stream power. Journal of Hydraulic Engineering, ASCE, 1979, 105: 981 – 998.

[72] Stevens, H. H. and C. T.,Yang. Breakout Session, IV, Sediment Data Management, Sediment – Flux, GSTARS (Bureau of Reclamations), 1989.

[73] White, W. R., Milli, H. and Crabbe, A. D. Sediment transport theories: a review. Proc. Instn. Civ. Engrs, 1975, 59: 265-292.

[74] White, W. R., Paris, E. and Bettess, R. The frictional characteristics of alluvial streams; a new approach. Proc. Instn. Civ. Engrs., 1980, 69, part 2: 737-750.

[75] White, W. R., Bettess, R. and Paris, E. Analytical approach to river review. Proc. Am. Soc. Civ. Engrs, J. Hydr. Div., 1982, 108 (HY10): 1179-1193.

[76] Wormleaton, P. R., Regulated Rivers: Research and Management, 1988, 2: 517 – 533.

[77] Wormleaton, P. R. and Merrett, D. J. An improved method of calculation for steady uniform flow in prismatic main channel’, Journal of Hydraulic Engineering, ASCE, 1990.

[78] Wormleaton, P. R, Allen, J., and Hadjipanos, P. Discharge assessment in compound channel flow’, Journal of the Hydraulics Division, ASCE, 1982, 108 (9): 975-994.

[79] Yang, C. T. Incipient motion and sediment transport’, Proc. Am. Soc. Civ. Engrs, J. Hydraul. Div., 1973, 99 (HY10): 1679-1704.

[80] Yang, C. T. Unit stream power and sediment transport. Proc. Am. Soc. Civ. Engrs., J. Hydraul. Div., 1972, 98(HY10): 1805-1826.

[81] Yang, C.T. Incipient motion and sediment transport. Proc. Soc. Civ. Engrs., J. Hydraul. Div., 1973, 99(HY10): 1679-1704.

[82] Yang, C. T. Energy dissipation rate approach in river mechanics. Sediment Transport in Gravel-Bed Rivers, John Wiley & Sons, New York, 1987: 735-766.

[83] Kaneko, A. Oscillation Sand Ripples in Viscous Fluids. Proc. J. S. C. E., 1981, 307: 113-124.

[84] Kaneko, A., and Honji, H. Double Structures of Steady Streaming in the Oscillatory Viscous Flow over a Wavy Wall. J. of Fluid Mech., 1979, 93: 727-736.

[85] Kennedy, J.F., and Brooks, N. H. Laboratory Study of Alluvial Streams at Constant Discharge. Proceedings, Federal Inter-Agency Sedimentation Conference, Miscellaneous Publication 970, Agricultural Research Service, 1963: 320-330.

[86] Kinoshita, R. Formation of Dunes on River Bed. Transactions, Japan Society of Civil Engineers, 1987, 42: 1-21.

[87] Knighton, A. D., and Nanson, G.C. Anastomosis and the continuum of the channel pattern. Earth Surf. Process. Landf., 1993, 18: 613-25.

[88] Kuroki, M., Kishi, T., and Itakura, T., Hydraulic Characteristics of Alternate Bars, Report for National Science Foundation, Department of Civil Engineering, Hokkaido University, Hokkaido, 1975, 80-88.

[89] Langbein, W. B., and Leopold, L.B. River Meanders-Theory of Minimum Variance. USGS Prof. Paper, , 1966, 422-H, 15.

[90] Lane, E. W. A Study of the Shape of Channels Formed by Natural Streams Flowing in Erodible Material. U. S. Army Eng. Division, Missouri River, Corps. of Engineers, M. R. D. Sediment Series, 9, Omaha, Neb, 1957.

[91] Leopold, L.B., Wolman, M. G. River Meanders. Bulletin of the Geological Society of America, 1960, 71, 769-794.

[92] Leopold, L. B., Wolman, M.G., Miller, J. P., Fluvial Processes in Geomorphology, W. H. Freeman and Co., San Francisco, Calif., 1964, 522.

[93] Leopold, L. B., and Wolman, M. G. River Channel Patterns, Braided, Meandering and Straight. USGS Professional Paper, 1957, 282-B: 45-62.

[94] Lyne, W. H. Unsteady Viscous Flow Over a Wavy Wall. J. Fluid Mech., 1971, 50: 33-48.

[95] McLean, S. R., and J. D. Smith. A Model For Flow over Two-dimensional Bedforms. J. Hydraulic Eng., 1986, 112: 300-317.

[96] Meyer-Peter, E., and Müller, R. Formula for bed load transport. Proc. 2nd Meetings, Intern. Assoc. Hydr. Res., 1948, 6.

[97] Muramoto, N., and M. Fujita. The Classification of Meso-scale River Bed Configuration and the Criterion of its Formation. Proceedings of the 22nd Japanese Conference on Hydraulics, Japan Society of Civil Engineers,1978.

[98] Parker, G. On the Cause and Characteristic Scales of Meandering and Braiding in Rivers; Journal of Fluid Mechanics, London, England, 1976, 76(3): 457-480.

[99] Parker, G., and Peterson, A. W. Bar Resistance of Gravel-bed Streams. Journal of the Hydraulics Division, ASCE, 106, HY10, 1980, 1559-1576.

[100] Schoklitsch, A. Handbuch des Wasserbaues. (in German) Springer Verlag, 1950.

[101] Sleath, M., Sea-Bed Mechanics, McGraw-Hill Book Company, New York, Toronto, 1984.

[102] Smith, J. D., and McLean, S. R. Spatially Averaged Flow over a Wavy Surface, J. Geophys. Res., 1977, 82: 1735-1746.

[103] Stuart, T. Double Boundary Layers in Oscillatory Viscous Flow. J. Fluid Mech., 1966, 24: 673-687.

[104] Sukewaga, N., Study on Meandering of Streams in Straight Channels, Report of Bureau of Resources, Department of Science and Technology, 1971.

[105] Sukewaga, N. Criterion for Alternate Bar Formation in Experimental Flumes. Proceedings, Japan Society of Civil Engineers, 1972, 207.

[106] Yalin, M. S., Mechanics of Sediment Transport, 2nd. Ed., Pergamon Press Inc., London, England, 1977.

[107] Yang, C. T., and Song, C. S. Theory of Minimum Rate of Energy Dissipation. Journal of the Hydraulics Division, ASCE, 105, HY7, Proc., 1979, Paper 14677: 769-784.

[108] Yilmaz, L., Irrigation and Drainage, Studium Press, LLC, U.S.A., 2012

[109] Kalinske, A. Sediment transport in a curved channel. Springer Verlag, 1942 .


How to Cite

Yilmaz, L. (2019). Sensitivity Analysis Of Geographical River Boundary Layers. Journal of Geographical Research, 2(2), 25–34.


Article Type