
The Interconnection of Reproductive Biology and Conservation Strategies for the Lesser Spiny Eel in the Progo River Ecosystem
DOI:
https://doi.org/10.30564/re.v8i1.12096Abstract
The lesser spiny eel (Macrognathus aculeatus) is a significant species in Southeast Asia's freshwater ecosystems, particularly in the Progo River, Indonesia. This study investigates the reproductive biology of the lesser spiny eel, focusing on size, weight, sex ratio, gonad maturity, fertility, and environmental influences on spawning. A total of 217 eels were sampled, and data on gonadal maturity index (GMI), fecundity, and oocyte size were collected and analyzed. The study found a balanced sex ratio of 0.95:1.0, with significant fluctuations during the spawning season. Female eels averaged 33.4 cm in length and 130.4 g in weight, while males averaged 31.6 cm and 107.7 g. Over 58% of females reached gonadal maturity level IV during peak spawning months, indicating synchronized reproductive cycles. The average fecundity at maturity level IV was 2062 ± 605 grains, with larger oocytes being released during spawning. The findings highlight the importance of hydrological conditions in the reproductive success of lesser spiny eels. The study confirms that environmental factors, such as rainfall and water temperature, significantly influence spawning behavior. The low relative fecundity suggests vulnerability to overfishing and habitat degradation, emphasizing the need for targeted conservation efforts. The lesser spiny eel's reproductive biology is intricately linked to environmental conditions, necessitating comprehensive conservation strategies that include habitat protection and community engagement. By fostering local involvement and awareness, conservation initiatives can enhance the sustainability of this species and its ecosystem, ensuring the long-term viability of the lesser spiny eel in the Progo River.
Keywords:
Biodiversity; Community; Fecundity; Habitat; MaturityReferences
[1] Alter, S.E., Brown, B., Stiassny, M.L.J., 2015. Molecular Phylogenetics Reveals Convergent Evolution in Lower Congo River Spiny Eels. BMC Evolutionary Biology. 15(1), 224. DOI: https://doi.org/10.1186/s12862-015-0507-x
[2] Stassen, M.J.M., Van De Ven, M.W.P.M., Van Der Heide, T., et al., 2010. Population Dynamics of the Migratory Fish Prochilodus Lineatus in a Neotropical River: The Relationships with River Discharge, Flood Pulse, El Niño and Fluvial Megafan Behaviour. Neotropical Ichthyology. 8(1), 113–122. DOI: https://doi.org/10.1590/S1679-62252010005000006
[3] Djumanto, 2023. Lesser Spiny Eel (Macrognathus aculeatus) Feeding Preferences in the Progo River, Yogyakarta, Indonesia. International Journal of Bonorowo Wetlands. 13(1). Available from: https://smujo.id/bw/article/view/14117
[4] Dangeubun, F.D.W., Tetelepta. S.J.M., 2013. Problem of Fisher Community and it’s Implication on the Management of South-East Aru Conservation Region. AACL Bioflux. 6(6), 518–529. Available from: https://www.researchgate.net/publication/272354750_Problem_of_fisher_community_and_it's_implication_on_the_management_of_South-East_Aru_conservation_region
[5] Gurgel, L.D.L., Verani, J.R., Chellappa, S., 2012. Reproductive Ecology of Prochilodus brevis an Endemic Fish from the Semiarid Region of Brazil. The Scientific World Journal. 2012, 1–7. DOI: https://doi.org/10.1100/2012/810532
[6] Abujam, S.S., Biswas, S.P., 2011. Studies on the Reproductive Biology of Spiny Eel, Macrognathus aral From Upper Assam. Journal of Environmental Biology. 32(5), 635–639. Available from: https://pubmed.ncbi.nlm.nih.gov/22319881/
[7] Alit, M.A., Salam, M.A., Alam, M.S., et al., 2023. Domestication Process Influencing the Growth, Gonadal Development and Hematology of the Endangered Spiny Eel (Mastacembelus armatus). Egyptian Journal of Aquatic Biology & Fisheries. 27(3). Available from: https://www.semanticscholar.org/paper/Domestication-Process-Influencing-the-Growth%2C-and-al./2f4ea2d771b0e9ecc3b06a44add946309feeb397
[8] Song, B., Li, X., Zan, H., 2020. Effects of Different Environmental Factors and Hydrological Conditions on Fish Reproduction. International Journal of Animal Research. 39. DOI: https://doi.org/10.28933/ijar-2020-04-1005
[9] Anonim, 2025. Central Statistics Agency of Yogyakarta Province. Available from: https://yogyakarta.bps.go.id/id/statistics-table/2/MTUyIzI=/curah-hujan-per-bulan.html (in Indonesian)
[10] Dadras, H., Dzyuba, B., Cosson, J., et al., 2017. Effect of Water Temperature on the Physiology of Fish Spermatozoon Function: A Brief Review. Aquaculture Research. 48(3), 729–740. DOI: https://doi.org/10.1111/are.13049
[11] Rahmawati, N., Rahayu, K., Arisanty, D., et al., 2024. Variation of Groundwater Level Due to Land Use, Precipitation, and Earthquake in Yogyakarta City from 2005 to 2020. Groundwater for Sustainable Development. 26, 101195. DOI: https://doi.org/10.1016/j.gsd.2024.101195
[12] Rosa, G.R., Salvador, G.N., Bialetzki, A., et al., 2018. Spatial and Temporal Distribution of Ichthyoplankton During an Unusual Period of Low Flow in a Tributary of the São Francisco River, Brazil. River Research and Applications. 34(1), 69–82. DOI: https://doi.org/10.1002/rra.3225
[13] Rahman, M.A., Sultana, M.A., Ahmed, F.F., et al., 2024. Effect of Water Quality Parameters and Climatic Influences on Reproductive Phenology of Macrognathus Pancalus in Wetland Ecosystem: Recommending a Long-Term Management Approach and Conservation Policy. Environmental Monitoring and Assessment. 196(2), 219. DOI: https://doi.org/10.1007/s10661-024-12364-0
[14] Ziober, S.R., Reynalte-Tataje, D.A., Zaniboni-Filho, E., 2015. The Importance of a Conservation Unit in a Subtropical Basin for Fish Spawning and Growth. Environmental Biology of Fishes. 98(2), 725–737. DOI: https://doi.org/10.1007/s10641-014-0307-y
[15] Sobczak, J.R.S., Valduga, A.T., Restello, R.M., et al., 2013. Conservation Unit and Water Quality: The Influence of Environmental Integrity on Benthic Macroinvertebrate Assemblages. Acta Limnologica Brasiliensia. 25(4), 442–450. DOI: https://doi.org/10.1590/S2179-975X2013000400009
[16] Rhody, N.R., 2014. Optimisation of Common Snook Centropomus undecimalis Broodstock Management [PhD’s thesis]. University of Stirling: Stirling, Scotland. Available from: http://hdl.handle.net/1893/21200
[17] Mollah, M.F.A., Ali, M.R., Taslima. K., 2013. Domestication and Observation on Induced Breeding of Spiny Eel Mastacembelus armatus. American Journal of Food Science and Technology. 1(4), 82–86. Available from: https://pubs.sciepub.com/ajfst/1/4/4/index.html
[18] Durif, C., Dufour, S., Elie, P., 2006. Impact of Silvering Stage, Age, Body Size and Condition on Reproductive Potential of the European Eel. Marine Ecology Progress Series. 327, 171–181. DOI: https://doi.org/10.3354/meps327171
[19] Lin, Y.-J., Chen, H.-M., 2023. Directional Asymmetry in Gonad Length Indicates Moray Eels (Teleostei, Anguilliformes, Muraenidae) Are “Right-Gonadal.” Scientific Reports. 13(1), 2963. DOI: https://doi.org/10.1038/s41598-023-29218-3
[20] Koizumi, I., Shimatani, I.K., 2016. Socially Induced Reproductive Synchrony in a Salmonid: An Approximate Bayesian Computation Approach. Behavioral Ecology. 27(5), 1386–1396. DOI: https://doi.org/10.1093/beheco/arw056
[21] Kottelat, M., Whitten, T., 1996. Freshwater Biodiversity in Asia: With Special Reference to Fish, World Bank Technical Papers. The World Bank: Washington, DC, USA. DOI: https://doi.org/10.1596/0-8213-3808-0
[22] LaBrie, L.A.P., Carlson, T.L., Wesner, J.S., et al., 2025. Reproductive Characteristics and Spawning Potential Ratio Modeling of a Vulnerable Riverine Specialist in the Lower Unchannelized Missouri River, USA. Fisheries Research. 286, 107386. DOI: https://doi.org/10.1016/j.fishres.2025.107386
[23] Rahman, M.A., Sultana, M.A., Islam, M.A., et al., 2024. Stock Assessment of Barred Spiny Eel, Macrognathus Pancalus (Hamilton, 1822) in a Wetland Ecosystem, Northwestern Bangladesh: A Fundamental Approach to Ensure Sustainability and Conservation. Heliyon. 10(5), e26492. DOI: https://doi.org/10.1016/j.heliyon.2024.e26492
[24] Manlik, O., McDonald, J.A., Mann, J., et al., 2016. The Relative Importance of Reproduction and Survival for the Conservation of Two Dolphin Populations. Ecology and Evolution. 6(11), 3496–3512. DOI: https://doi.org/10.1002/ece3.2130
[25] Skakkebæk, N.E., Lindahl-Jacobsen, R., Levine, H., et al., 2022. Environmental Factors in Declining Human Fertility. Nature Reviews Endocrinology. 18(3), 139–157. DOI: https://doi.org/10.1038/s41574-021-00598-8
[26] Stacey, J.A., Pratt, T.C., Verreault, G., et al., 2015. A Caution for Conservation Stocking as an Approach for Recovering Atlantic Eels. Aquatic Conservation: Marine and Freshwater Ecosystems. 25(4), 569–580. DOI: https://doi.org/10.1002/aqc.2498
[27] Kappus, S., Fong, P., 2014. Sex Ratio Does Not Influence Sex Change Despite Its Effect on Reproductive Success. Behavioral Ecology. 25(4), 827–833. DOI: https://doi.org/10.1093/beheco/aru039
[28] Marasco, V., Boner, W., Griffiths, K., et al., 2018. Environmental Conditions Shape the Temporal Pattern of Investment in Reproduction and Survival. Proceedings of the Royal Society B: Biological Sciences. 285(1870), 20172442. DOI: https://doi.org/10.1098/rspb.2017.2442
[29] Erisman, B., Heyman, W., Kobara, S., et al., 2017. Fish Spawning Aggregations: Where Well‐Placed Management Actions Can Yield Big Benefits for Fisheries and Conservation. Fish and Fisheries. 18(1), 128–144. DOI: https://doi.org/10.1111/faf.12132
[30] Boulenger, C., Acou, A., Gimenez, O., et al., 2016. Factors Determining Survival of European Eels in Two Unexploited Sub‐Populations. Freshwater Biology. 61(6), 947–962. DOI: https://doi.org/10.1111/fwb.12759
[31] Heuer, R.M., Grosell, M., 2014. Physiological Impacts of Elevated Carbon Dioxide and Ocean Acidification on Fish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 307(9), R1061–R1084. DOI: https://doi.org/10.1152/ajpregu.00064.2014
[32] Tsikliras, A.C., Stergiou, K.I., 2014. Size at Maturity of Mediterranean Marine Fishes. Reviews in Fish Biology and Fisheries. 24(1), 219–268. DOI: https://doi.org/10.1007/s11160-013-9330-x
[33] Fernández-Chacón, A., Genovart, M., Álvarez, D., et al., 2015. Neighbouring Populations, Opposite Dynamics: Influence of Body Size and Environmental Variation on the Demography of Stream-Resident Brown Trout (Salmo Trutta). Oecologia. 178(2), 379–389. DOI: https://doi.org/10.1007/s00442-015-3222-9
[34] Sun, Y., Gu, R., Lu, X., et al., 2013. Application of Human Oocyte Morphometric Parameters in Assessment of Fertilization and Embryo Development. Journal of Peking University. Health Sciences. 45(6), 848–851. Available from: https://pubmed.ncbi.nlm.nih.gov/24343060/ (in Chinese)
[35] Wright, P.J., Rowe, S., 2019. Reproduction and Spawning. In: Rose, G.A. (Ed.). Atlantic Cod: A Bio‐Ecology. Wiley: London, UK. pp. 87–132. DOI: https://doi.org/10.1002/9781119460701.ch3
[36] Le Boucher, R., Dupont-Nivet, M., Vandeputte, M., et al., 2012. Selection for Adaptation to Dietary Shifts: Towards Sustainable Breeding of Carnivorous Fish. PLoS ONE. 7(9), e44898. DOI: https://doi.org/10.1371/journal.pone.0044898
[37] Williams, S.E., Hoffman, E.A., 2009. Minimizing Genetic Adaptation in Captive Breeding Programs: A Review. Biological Conservation. 142(11), 2388–2400. DOI: https://doi.org/10.1016/j.biocon.2009.05.034
[38] Verma, S.K., Alim, A., 2014. Differential Activity of Stanniocalcin in Male and Female Fresh Water Teleost Mastacembelus armatus (Lacepede) during Gonadal Maturation. PLoS ONE. 9(7), e101439. DOI: https://doi.org/10.1371/journal.pone.0101439
[39] Jellyman, D.J., 2022. An Enigma: How Can Freshwater Eels (Anguilla Spp.) Be Such a Successful Genus yet Be Universally Threatened? Reviews in Fish Biology and Fisheries. 32(2), 701–718. DOI: https://doi.org/10.1007/s11160-021-09658-8
[40] Djumanto, Setyobudi, E., Simanjuntak, C.P.H., et al., 2020. Estimating the Spawning and Growth of Striped Snakehead Channa Striata Bloch, 1793 in Lake Rawa Pening Indonesia. Scientific Reports. 10(1), 19830. DOI: https://doi.org/10.1038/s41598-020-76825-5
[41] Djumanto, D., Devi, M., Setyobudi. E., 2013. Distribution of Ichthyofauna in the Downstream Part of the Opak River, Yogyakarta. Jurnal Iktiologi Indonesia. 13(2), 97–108. Available from: https://jurnal-iktiologi.org/index.php/jii/article/view/97 (in Indonesian)
[42] Djumanto, N., Pranoto, B.E., Diani, V.S., et al., 2017. Food and the Growth of Introduced Milkfish, Chanos Chanos (Forsskal, 1775) in Sermo Reservoir, Kulon Progo. Jurnal Iktiologi Indonesia. 17(1), 83. DOI: https://doi.org/10.32491/jii.v17i1.306 (in Indonesian)
[43] Universitas Gadjah Mada, 2021. Clean River and Distribution of Local River Fish in the Commemoration of the 58th Anniversary of the Department of Fisheries, Faculty of Agriculture, UGM. Available from: https://web.faperta.ugm.ac.id/bersih-sungai-dan-penebaran-ikan-lokal-sungai-dalam-arangka-hut-ke-58-departemen-perikanan-fakultas-pertanian-ugm/ (cited 23 September 2024). (in Indonesian)
[44] Anonim, 2017. Department of Marine Affairs and Fisheries UGM Spreads Eel Seeds in the Bedog Jipangan River. Available from: https://bangunjiwo-bantul.desa.id/first/artikel/323-DKP-menebar-benih-ikan-sidat-di-Kali-Bedog-Jipangan (cited 23 September 2024). (in Indonesian)
[45] Jacoby, D.M.P., Casselman, J.M., Crook, V., et al., 2015. Synergistic Patterns of Threat and the Challenges Facing Global Anguillid Eel Conservation. Global Ecology and Conservation. 4, 321–333. DOI: https://doi.org/10.1016/j.gecco.2015.07.009
[46] King, A.J., Gwinn, D.C., Tonkin, Z., et al., 2016. Using Abiotic Drivers of Fish Spawning to Inform Environmental Flow Management. Journal of Applied Ecology. 53(1), 34–43. DOI: https://doi.org/10.1111/1365-2664.12542
[47] Burgerhout, E., Lokman, P.M., Van Den Thillart, G.E.E.J.M., et al., 2019. The Time-Keeping Hormone Melatonin: A Possible Key Cue for Puberty in Freshwater Eels (Anguilla Spp.). Reviews in Fish Biology and Fisheries. 29(1), 1–21. DOI: https://doi.org/10.1007/s11160-018-9540-3
[48] Faridi, A.A., Bano, F., Serajuddin, M., 2020. Aspects of Reproductive Biology of the Lesser Spiny Eel Macrognathus Aculeatus (Bloch, 1786) from River Ganga, Uttar Pradesh, India. Indian Journal of Fisheries. 67(2). DOI: https://doi.org/10.21077/ijf.2019.67.2.94362-03
[49] Nilsson, D., Baxter, G., Butler, J.R.A., et al., 2016. How Do Community-Based Conservation Programs in Developing Countries Change Human Behaviour? A Realist Synthesis. Biological Conservation. 200, 93–103. DOI: https://doi.org/10.1016/j.biocon.2016.05.020
[50] Righton, D., Verhelst, P., Westerberg, H., 2025. The Blueprint of the European Eel Life Cycle: Does Life‐History Strategy Undermine or Provide Hope for Population Recovery? Fish and Fisheries. 26(4), 505–519. DOI: https://doi.org/10.1111/faf.12894
[51] Oliveira, A.G.D., Lopes, T.M., Angulo-Valencia, M.A., et al., 2020. Relationship of Freshwater Fish Recruitment With Distinct Reproductive Strategies and Flood Attributes: A Long-Term View in the Upper Paraná River Floodplain. Frontiers in Environmental Science. 8, 577181. DOI: https://doi.org/10.3389/fenvs.2020.577181
[52] Olito, C., Marshall, D.J., Connallon, T., 2017. The Evolution of Reproductive Phenology in Broadcast Spawners and the Maintenance of Sexually Antagonistic Polymorphism. The American Naturalist. 189(2), 153–169. DOI: https://doi.org/10.1086/690010
[53] Maharsi, G.J., 2024. Study of Ecobiological Characteristics of Spiny Eel (Mastacembelidae) in Elo River, Magelang, Central Java. JFMR-Journal of Fisheries and Marine Research. 8(3). DOI: https://doi.org/10.21776/ub.jfmr.2024.008.03.2
[54] Kitolelei, S., Breckwoldt, A., Kitolelei, J., et al., 2022. Fisherwomen’s Indigenous and Local Knowledge - the Hidden Gems for the Management of Marine and Freshwater Resources in Fiji. Frontiers in Marine Science. 9, 991253. DOI: https://doi.org/10.3389/fmars.2022.991253
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Djumanto

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.




Djumanto