
Groundwater Contamination in Semi-Arid Zones: Assessing Organophosphorus and Organochlorine Pesticide Risks from Agricultural Intensification in the Guir Watershed
DOI:
https://doi.org/10.30564/re.v7i2.9082Abstract
This study evaluates pesticide contamination in groundwater downstream of the Kaddoussa Dam (Guir watershed, Morocco) and investigates the influence of agricultural activities on water quality. Nine sampling stations were strategically selected during November 2023 (post-agricultural season) to analyze spatial patterns of 18 pesticide residues: 7 organophosphorus and 11 organochlorines. Identification and quantification were performed via gas chromatography method, targeting both compound classes. Key findings reveal moderate yet localized contamination. The total concentration of organophosphorus pesticides (∑POPs) ranged from 0 µg/L (S8) to 0.191 µg/L (S4), with peak concentrations at stations S3 (0.190 µg/L) and S4 (0.191 µg/L), correlating spatially with intensive agricultural zones. Otherwise, the total concentration of organochlorine pesticides (∑POCs) showed lower levels (0–0.060 µg/L), with maxima at S4 linked to endosulfan and HCH isomers. Notably, none of the detected organochlorine concentrations exceeded 0.06 µg/L, indicating relatively low levels of contamination. Central stations (S2–S6) exhibited co-occurrence of both pesticide groups, dominated by organophosphorus pesticides (0.135–0.191 µg/L), while peripheral sites (S1, S7, S8, S9) displayed negligible or undetectable residues. Despite sub-regulatory thresholds, the persistent detection of pesticides underscores ecological and public health risks, particularly in arid regions with heightened vulnerability due to limited healthcare access and water scarcity. Even at low concentrations, organophosphorus and organochlorine pesticides pose significant threats to aquatic ecosystems through bioaccumulation, while also presenting acute health risks to farmworkers and local communities dependent on contaminated groundwater. This study highlights the urgent need for integrated pesticide management strategies to mitigate long-term environmental and socio-economic impacts in agriculturally intensive, water-stressed regions.
Keywords:
Pesticide Residues; Groundwater; Agricultural Activities; Human Health; Guir WatershedReferences
[1] Grey, D., Garrick, D., Blackmore, D., et al., 2013. Water security in one blue planet: twenty-first century policy challenges for science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 371(2002), 20120406. DOI: https://doi.org/10.1098/rsta.2012.0406.
[2] Cooley, H., Ajami, N., Ha, M.L., et al., 2013. Global water governance in the 21st century. Pacific Institute: Oakland, CA, USA. pp. 34.
[3] Albou, E.M., Abdellaoui, M., Abdaoui, A., et al., 2024. Agricultural Practices and their Impact on Aquatic Ecosystems—A Mini-Review. Ecological Engineering & Environmental Technology (EEET). 25(1), 321–331. DOI: https://doi.org/10.12912/27197050/175652.
[4] Mateo-Sagasta, J., Zadeh, S.M., Turral, H., et al., 2017. Water pollution from agriculture: A global review. FAO & IWMI. CGIAR Research Program on Water, Land and Ecosystems (WLE): Rome, Italy and Colombo, Sri Lanka. pp. 35.
[5] FAO, 2014. Area equipped for irrigation. Infographic. AQUASTAT: FAO's information system on water and agriculture. Food and Agriculture Organization of the United Nations (FAO): Rome, Italy.
[6] Liu, Y., Wang, P., Gojenko, B., et al., 2021. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution. 291, 118209. DOI: https://doi.org/10.1016/j.envpol.2021.118209.
[7] Morin-Crini, N., Lichtfouse, E., Liu, G., et al., 2022. Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters. 20(4), 2311–2338. DOI: https://doi.org/10.1007/s10311-022-01447-4.
[8] Shah, Z.U., Parveen, S., 2020. A review on pesticides pollution in aquatic ecosystem and probable adverse effects on fish. Pollut. Res. 39(2), 309–321.
[9] Häder, D.P., Banaszak, A.T., Villafañe, V.E., et al., 2020. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total Environment. 713, 136586. DOI: https://doi.org/10.1016/j.scitotenv.2020.136586.
[10] Popp, J., Pető, K., Nagy, J., 2013. Pesticide productivity and food security. A review. Agronomy for Sustainable Development. 33, 243–255. DOI: https://doi.org/10.1007/s13593-012-0105-x.
[11] Srivastav, A.L., 2020. Chemical fertilizers and pesticides: role in groundwater contamination. In: Prasad, M.N.V. (ed.). Agrochemicals Detection, Treatment and Remediation. Butterworth-Heinemann: Oxford, UK. pp. 143–159.
[12] Kumar, R., Sankhla, M.S., Kumar, R., et al., 2021. Impact of pesticide toxicity in aquatic environment. Biointerface Research in Applied Chemistry. 11(3), 10131–10140. DOI: https://doi.org/10.33263/BRIAC113.1013110140.
[13] Sumudumali, R.G.I., Jayawardana, J.M.C.K., 2021. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environmental Management. 67(2), 263–276. DOI: https://doi.org/10.1007/s00267-020-01423-0.
[14] Islam, M.A., Amin, S.N., Rahman, M.A., et al., 2022. Chronic effects of organic pesticides on the aquatic environment and human health: A review. Environmental Nanotechnology, Monitoring & Management. 18, 100740. DOI: https://doi.org/10.1016/j.enmm.2022.100740.
[15] de Souza, R.M., Seibert, D., Quesada, H.B., et al., 2020. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection. 136, 1–14. DOI: https://doi.org/10.1016/j.psep.2020.01.005.
[16] Calvo, S., Romo, S., Soria, J., et al., 2021. Pesticide contamination in water and sediment of the aquatic systems of the Natural Park of the Albufera of Valencia (Spain) during the rice cultivation period. Science of the Total Environment. 774, 145009. DOI: https://doi.org/10.1016/j.scitotenv.2021.145009
[17] Sarker, S., Akbor, M.A., Nahar, A., et al., 2021. Level of pesticides contamination in the major river systems: A review on South Asian countries perspective. Heliyon. 7(6), e07271. DOI: https://doi.org/10.1016/j.heliyon.2021.e07271.
[18] Das, S., Gupta, A., 2012. Effect of malathion (EC50) on gill morphology of Indian flying barb, Esomus danricus (Hamilton-Buchanan). World Journal of Fish and Marine Sciences. 4(6), 626–628.
[19] Rao, M.V., Yanamala, V., 2020. Impact of malathion (an organophosphate) on biochemical constituents (proteins, carbohydrates and free aminoacids) of fresh water fish Channa punctatus (Bloch). Uttar Pradesh Journal of Zoology. 41(10), 51–58.
[20] Singh, A., Dhiman, N., Kar, A.K., et al., 2020. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. Journal of Hazardous Materials. 385, 121525. DOI: https://doi.org/10.1016/j.jhazmat.2019.121525.
[21] Li, Z., Jennings, A., 2017. Worldwide regulations of standard values of pesticides for human health risk control: a review. International Journal of Environmental Research and Public Health. 14(7), 826. DOI: https://doi.org/10.3390/ijerph14070826.
[22] Bernardes, M.F.F., Pazin, M., Pereira, L.C., et al., 2015. Impact of pesticides on environmental and human health. In: Andreazza, A.C., Scola, G. (eds.). Toxicology Studies-Cells, Drugs and Environment. BoD – Books on Demand: Hamburg, Germany. pp. 195–233. DOI: http://dx.doi.org/10.5772/59710.
[23] da Silva Sousa, J., do Nascimento, H.O., de Oliveira Gomes, H., et al., 2021. Pesticide residues in groundwater and surface water: Recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchemical Journal. 168, 106359. DOI: https://doi.org/10.1016/j.microc.2021.106359.
[24] Zhao, X., Cui, H., Wang, Y., et al., 2017. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry. 66(26), 6504–6512. DOI: https://doi.org/10.1021/acs.jafc.7b02004.
[25] Syafrudin, M., Kristanti, R.A., Yuniarto, A., et al., 2021. Pesticides in drinking water—a review. International Journal of Environmental Research and Public Health. 18(2), 468. DOI: https://doi.org/10.3390/ijerph18020468.
[26] Caldas, E.D., 2019. Toxicological aspects of pesticides. In: Vaz Jr., S. (ed). Sustainable Agrochemistry. Springer, Cham, Switzerland. pp. 275–305. DOI: https://doi.org/10.1007/978-3-030-17891-8_9.
[27] Hoppin, J.A., LePrevost, C.E., 2017. Pesticides and human health. Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers. John Wiley & Sons: Hoboken, NJ, USA. pp. 249–273.
[28] Cocco, P., 2016. Pesticides and human health. Oxford Research Encyclopedia of Environmental Science. Oxford University Press: Oxford, UK. DOI: https://doi.org/10.1093/acrefore/9780199389414.013.82.
[29] Hilali, M., Boualoul, M., Bahaj, T., 2010. State of knowledge on aquifer reservoirs in the Gourrama region (Upper Guir, southern Morocco). Proceedings of Integrated Water Resources and Management Challenges of the Sustainable Development—Second International Conference; 3–5 November 2010; Marrakech, Morocco. pp. 134–138.
[30] Guir-Ziz-Rhéris Hydraulic Basin Agency (ABHGZR), 2011. Update of the Master Plan for Integrated Water Resources Management in the Guir-Ziz-Rhéris and Maider Basins. Synthesis Report. Final Report, Marsh 2011. Available from: https://www.scribd.com/document/460886440/1101-PDAIRE-GRZM-Ph1-Rap-M1-def-OS-Mars-2011 (cited 15 January 2025).
[31] IMANOR (Institut Marocain de Normalisation), 2010. NM 03.7.201: Determination of organophosphorus and organo-thiophosphorus pesticides – Gas chromatography method and NM 03.7.202: Determination of Organochlorine Pesticides and Polychlorinated Biphenyls in Water – Gas Chromatography Method. Available from: https://www.imanor.gov.ma/normes/ (cited 15 January 2025).
[32] EU, 2006. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union. L372, 19–31.
[33] Ouakhssase, A., Jalal, M., Addi, E.A., 2024. Pesticide contamination pattern from Morocco, insights into the surveillance situation and health risk assessment: a review. Environmental Monitoring and Assessment. 196, 299. DOI: https://doi.org/10.1007/s10661-024-12478-5.
[34] Berni, I., Menouni, A., El Ghazi, I., et al., 2021. Health and ecological risk assessment based on pesticide monitoring in Saïss plain (Morocco) groundwater. Environmental Pollution. 276, 116638. DOI: https://doi.org/10.1016/j.envpol.2021.116638.
[35] Lakhlalki, H., Jayed, M., Benbrahim, S., et al., 2020. Assessment of contamination by organochlorine pesticides and polychlorinated biphenyl's from Oualidia lagoon water (Morocco). Arabian Journal of Geosciences. 13, 821. DOI: https://doi.org/10.1007/s12517-020-05761-5.
[36] Sarti, O., Otal, E., Morillo, J., et al., 2021. Integrated assessment of groundwater quality beneath the rural area of R'mel, Northwest of Morocco. Groundwater for Sustainable Development. 14, 100620. DOI: https://doi.org/10.1016/j.gsd.2021.100620.
[37] Chaza, C., Sopheak, N., Mariam, H., et al., 2018. Assessment of pesticide contamination in Akkar groundwater, northern Lebanon. Environmental Science and Pollution Research. 25, 14302–14312. DOI: https://doi.org/10.1007/s11356-017-8568-6.
[38] Ronka, S., Kucharski, M., 2022. Application of novel polymeric, highly specific adsorbent for the removal of terbuthylazine from complex environmental samples. International Journal of Environmental Analytical Chemistry. 102(16), 3880–3893. DOI: https://doi.org/10.1080/03067319.2020.1776862.
[39] The Moroccan Health, Environment and Toxicovigilance Association, 2020. Report on the distribution of agricultural production and pesticide use in Morocco. Available from: http://www.amsetox.ma/formations/ (cited 15 January 2025).
[40] FAO, ONSSA, 2015. Study on Monitoring the Effects of Pesticides on Human Health and the Environment. Final Report 2015. Available from: UNEP-FAO-RC-SHPF-Morocco-Report-20151127.Fr%20(4).pdf.
[41] Hassaan, M.A., El Nemr, A., 2020. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research. 46(3), 207–220. DOI: https://doi.org/10.1016/j.ejar.2020.08.007.
[42] Tudi, M., Ruan, H.D., Wang, L., et al., 2021. Agriculture development, pesticide application and its impact on the environment. International Journal of Environmental Research and Public Health. 18(3), 1112. DOI: https://doi.org/10.3390/ijerph18031112.
[43] Tiryaki, O., Temur, C., 2010. The fate of pesticide in the environment. Journal of Biological and Environmental Sciences. 4(10), 29–38.
[44] Wu, X., Li, J., Zhou, Z., et al., 2021. Environmental occurrence, toxicity concerns, and degradation of diazinon using a microbial system. Frontiers in Microbiology. 12, 717286. DOI: https://doi.org/10.3389/fmicb.2021.717286.
[45] Vali, S., Majidiyan, N., Azadikhah, D., et al., 2022. Effects of Diazinon on the survival, blood parameters, gills, and liver of grass carp (Ctenopharyngodon idella Valenciennes, 1844; Teleostei: Cyprinidae). Water. 14(9), 1357. DOI: https://doi.org/10.3390/w14091357.
[46] Velki, M., Di Paolo, C., Nelles, J., et al., 2017. Diuron and diazinon alter the behavior of zebrafish embryos and larvae in the absence of acute toxicity. Chemosphere. 180, 65–76. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.017.
[47] Pirbeigi, A., Poorbagher, H., Eagderi, S., et al., 2016. Pathological effects of sublethal diazinon on the blood, gill, liver and kidney of the freshwater fish Capoeta damascina. Chemistry and Ecology. 32(3), 270–285. DOI: https://doi.org/10.1080/02757540.2015.1133614.
[48] Ebrahimzadeh, G., Alimohammadi, M., Rezaei Kahkha, M.R., et al., 2022. Contamination level and human non-carcinogenic risk assessment of diazinon pesticide residue in drinking water resources–a case study, IRAN. International Journal of Environmental Analytical Chemistry. 102(16), 4726–4737. DOI: https://doi.org/10.1080/03067319.2020.1789609.
[49] Nagato, E.G., Simpson, A.J., Simpson, M.J., 2016. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A. Aquatic Toxicology. 170, 175–186. DOI: https://doi.org/10.1016/j.aquatox.2015.11.023.
[50] Hawkey, A., Pippen, E., White, H., et al., 2020. Gestational and perinatal exposure to diazinon causes long-lasting neurobehavioral consequences in the rat. Toxicology. 429, 152327. DOI: https://doi.org/10.1016/j.tox.2019.152327.
[51] Dankovych, R.S., Tumanov, V.V., 2018. Сlinical signs and pathoanatomical changes in the brain for poisoning of domestic turkeys with diazinon. Scientific Bulletin of the Lviv National University of Veterinary Medicine and Biotechnology named after SZ Gzhytsky (Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій імені С.З. Ґжицького). 20(92), 222–228.
[52] Tumanov, V.V., 2018. Analysis of biochemical and hematological parameters of blood, clinical signs and pathoanatomical changes for spontaneous poisoning of turkeys with diazinon. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences. 20(83), 370–375. DOI: https://doi.org/10.15421/nvlvet8373.
[53] Bagheri, F., Vatandoost, H., Shayeghi, M., et al., 2019. Detection of Diazinon Residue in Honey and Honey Bee (Apis mellifera) in Bandar-Abbas and Meshkinshahr, Iran. Journal of Arthropod-Borne Diseases. 13(2), 185–193.
[54] Glavan, G., 2020. Histochemical Staining of Acetylcholinesterase in Carnolian Honeybee (Apis mellifera carnica) Brain after Chronic Exposure to Organophosphate Diazinon. Journal of Apicultural Science. 64(1), 123–130.
[55] Girón-Pérez, M.I., Mary, V.S., Rubinstein, H.R., et al., 2022. Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress. International Journal of Environmental Health Research. 32(10), 2309–2323. DOI: https://doi.org/10.1080/09603123.2021.1962814.
[56] Khalili Tanha, G., Barzegar, A., Shokrzadeh, M., et al., 2020. Correlation between serum concentration of diazinon pesticide and breast cancer incidence in Mazandaran Province, northern Iran. Caspian Journal of Environmental Sciences. 18(3), 197–204. DOI: https://doi.org/10.22124/cjes.2020.4132.
[57] Tian, X., Liu, L., Li, Y., et al., 2018. Nonenzymatic electrochemical sensor based on CuO-TiO2 for sensitive and selective detection of methyl parathion pesticide in ground water. Sensors and Actuators B: Chemical. 256, 135–142. DOI: https://doi.org/10.1016/j.snb.2017.10.066.
[58] Jaga, K., Dharmani, C., 2006. Methyl parathion: an organophosphate insecticide not quite forgotten. Reviews on Environmental Health. 21(1), 57–67. DOI: https://doi.org/10.1515/reveh.2006.21.1.57.
[59] Chen, T., Chen, H., Wang, A., et al., 2023. Methyl parathion exposure induces development toxicity and cardiotoxicity in zebrafish embryos. Toxics. 11(1), 84. DOI: https://doi.org/10.3390/toxics11010084.
[60] Roopavathy, J., Nandana, P.K., 2020. Effects of Methyl Parathion on Histology of Gill on Freshwater Fish, Oreochromis Mossambicus. International Journal of Advanced Research in Medical & Pharmaceutical Sciences. 5(4), 1–4.
[61] Keppeler, E.C., de Melo Plese, L.P., Vieira, L.J.S., 2015. Acute toxicity of methyl parathion on Daphnia laevis (Birge, 1879) and its impact on the activity of farmed fish. Brazilian Journal of Aquatic Science and Technology. 19(1), NB33–38. DOI: https://doi.org/10.14210/bjast.v19n1.pNB1-5.
[62] Rao, B., Thirupathi, K., Yanamala, V., 2018. Effect of methyl parathion (an organophosphate) on electrophoretic patterns of proteins in gill and Muscle of fresh water cat fish Heteropneustes fossilis (Bloch). World Journal of Pharmaceutical Research. 7(9), 899–908. DOI: https://doi.org/10.20959/wjpr20189-12025.
[63] Mani, A., Santhamoorthy, R.K., Kumar, K.P.R., et al., 2020. Methyl Parathion Insecticide Induced Morphological and Behavioural and Haematological Changes in the Freshwater Fish, H. molitrix (Silver Carp). East African Scholars Journal of Agriculture and Life Sciences. 3, 243–249. DOI: https://doi.org/10.36349/EASJALS.2020.v03i07.003.
[64] Abhijith, B.D., Ramesh, M., Poopal, R.K., 2016. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Journal of Basic & Applied Zoology. 77, 31–40. DOI: https://doi.org/10.1016/j.jobaz.2015.11.002.
[65] Fuentes-Delgado, V.H., Martínez-Saldaña, M.C., Rodríguez-Vázquez, M.L., et al., 2018. Renal damage induced by the pesticide methyl parathion in male Wistar rats. Journal of Toxicology and Environmental Health, Part A. 81(6), 130–141. DOI: https://doi.org/10.1080/15287394.2017.1394948.
[66] Patel, R.K., Singh, P.K., Pandey, R., et al., 2021. Impact of Methyl Parathion Organophosphate Pesticides Residues on Human Health and Environment as Toxicological Outcome. International Journal of Scientific Research in Chemistry (IJSRCH). 6(2), 12–23.
[67] Du, F., Fung, Y.S., 2018. Dual‐opposite multi‐walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip‐capillary electrophoresis determination of methyl parathion metabolites in human urine. Electrophoresis. 39(11), 1375–1381.
[68] Badr, A. M., 2020. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environmental Science and Pollution Research, 27(21), 26036-26057. DOI: 10.1007/s11356-020-08937-4. Epub 2020 May 13. DOI: https://doi.org/10.1002/elps.201700470.
[69] Vasseghian, Y., Almomani, F., Moradi, M., & Dragoi, E. N., 2022. Decontamination of toxic Malathion pesticide in aqueous solutions by Fenton-based processes: Degradation pathway, toxicity assessment and health risk assessment. Journal of Hazardous Materials, 423, 127016. DOI: https://doi.org/10.1016/j.jhazmat.2021.127016.
[70] Mrong, C. E., Islam, M. R., Kole, K., Neepa, N. N., Alam, M. J., Haque, M. R. & Mostakim, G. M., 2021. Malathion‐induced hematoxicity and its recovery pattern in Barbonymus gonionotus. Journal of Toxicology, 2021(1), 9417380. DOI: https://doi.org/10.1155/2021/9417380.
[71] Knapik, L. F., & Ramsdorf, W., 2020. Ecotoxicity of malathion pesticide and its genotoxic effects over the biomarker comet assay in Daphnia magna. Environmental monitoring and assessment, 192, 1-9. DOI: https://doi.org/10.1007/s10661-020-8235-0.
[72] Cui, J., Wei, Y., Jiang, J., Xiao, S., Liu, X., Zhou, Z., & Wang, P., 2023. Bioaccumulation, metabolism and toxicological effects of chiral insecticide malathion and its metabolites in zebrafish (Danio rerio). Chemosphere, 318, 137898. DOI: https://doi.org/10.1016/j.chemosphere.2023.137898.
[73] Shen, W., Lou, B., Xu, C., Yang, G., Yu, R., Wang, X & Wang, Y., 2020. Lethal toxicity and gene expression changes in embryonic zebrafish upon exposure to individual and mixture of malathion, chlorpyrifos and lambda-cyhalothrin. Chemosphere, 239, 124802. DOI: https://doi.org/10.1016/j.chemosphere.2019.124802.
[74] Gur, C., & Kandemir, F. M., 2023. Molecular and biochemical investigation of the protective effects of rutin against liver and kidney toxicity caused by malathion administration in a rat model. Environmental Toxicology, 38(3), 555-565. DOI: https://doi.org/10.1002/tox.23700.
[75] RAD, Samira Mosalaei, RAY, Ajay K., et BARGHI, Shahzad, 2022. Water pollution and agriculture pesticide. Clean Technologies, vol. 4, no 4, p. 1088-1102. DOI: https://doi.org/10.3390/cleantechnol4040066.
[76] Uikey, S., 2015. Effect of malathion toxicity on fresh water fish Labeo rohita. International Journal of Applied and Universal Research, 2(4), 10-15. Available online at: www.ijaur.com.
[77] Olakkaran, S., Purayil, A. K., Antony, A., Mallikarjunaiah, S., & Puttaswamygowda, G. H., 2020. Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 849, 503138. DOI: https://doi.org/10.1016/j.mrgentox.2020.503138.
[78] Anjitha, R., Antony, A., Shilpa, O., Anupama, K. P., Mallikarjunaiah, S., & Gurushankara, H. P., 2020. Malathion induced cancer-linked gene expression in human lymphocytes. Environmental research, 182, 109131. DOI: https://doi.org/10.1016/j.envres.2020.109131.
[79] Padayachee, K., Reynolds, C., Mateo, R., et al., 2023. A global review of the temporal and spatial patterns of DDT and dieldrin monitoring in raptors. Science of the Total Environment. 858, 159734. DOI: https://doi.org/10.1016/j.scitotenv.2022.159734.
[80] Matsushima, A., 2018. A novel action of endocrine-disrupting chemicals on wildlife; DDT and its derivatives have remained in the environment. International Journal of Molecular Sciences. 19(5), 1377. DOI: https://doi.org/10.3390/ijms19051377.
[81] Mansouri, A., Cregut, M., Abbes, C., et al., 2017. The environmental issues of DDT pollution and bioremediation: a multidisciplinary review. Applied Biochemistry and Biotechnology. 181, 309–339. DOI: https://doi.org/10.1007/s12010-016-2214-5.
[82] Faroon, O., Ruiz, P., Jones, D., et al., 2022. Toxicological profile for DDT, DDE, and DDD. Agency for Toxic Substances and Disease Registry (US): Atlanta (GA), USA. pp. 1–510.
[83] Ma, J., Pan, L.B., Yang, X.Y., et al., 2016. DDT, DDD, and DDE in soil of Xiangfen County, China: residues, sources, spatial distribution, and health risks. Chemosphere. 163, 578–583. DOI: https://doi.org/10.1016/j.chemosphere.2016.08.050.
[84] Ferreira, V.B., Estrella, L.F., Alves, M.G.R., et al., 2020. Residues of legacy organochlorine pesticides and DDT metabolites in highly consumed fish from the polluted Guanabara Bay, Brazil: Distribution and assessment of human health risk. Journal of Environmental Science and Health, Part B. 55(1), 30–41. DOI: https://doi.org/10.1080/03601234.2019.1654808.
[85] Mendes, R.A., Lima, M.O., de Deus, R.J., et al., 2019. Assessment of DDT and mercury levels in fish and sediments in the Iriri River, Brazil: distribution and ecological risk. Journal of Environmental Science and Health, Part B. 54(12), 915–924. DOI: https://doi.org/10.1080/03601234.2019.1647060.
[86] Crago, J., Xu, E.G., Kupsco, A., et al., 2016. Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring. Environmental Pollution. 213, 940–948. DOI: https://doi.org/10.1016/j.envpol.2016.03.060.
[87] Tubbs, C.W., 2016. California condors and DDT: Examining the effects of endocrine disrupting chemicals in a critically endangered species. Endocrine Disruptors. 4(1), e1173766. DOI: https://doi.org/10.1080/23273747.2016.1173766.
[88] Bouwman, H., Yohannes, Y.B., Nakayama, S.M.M., et al., 2019. Evidence of impacts from DDT in pelican, cormorant, stork, and egret eggs from KwaZulu-Natal, South Africa. Chemosphere. 225, 647–658. DOI: https://doi.org/10.1016/j.chemosphere.2019.03.043.
[89] Steyn, L., Bouwman, H., Maina, J.N., 2018. Associations between DDT and egg parameters of the house sparrow Passer domesticus from the Thohoyandou area of South Africa. Chemosphere. 198, 249–256. DOI: https://doi.org/10.1016/j.chemosphere.2018.01.125.
[90] Ruiz-Toledo, J., Vandame, R., Castro-Chan, R.A., et al., 2018. Organochlorine pesticides in honey and pollen samples from managed colonies of the honey bee Apis mellifera Linnaeus and the stingless bee Scaptotrigona mexicana Guérin from Southern, Mexico. Insects. 9(2), 54. DOI: https://doi.org/10.3390/insects9020054.
[91] Roszko, M.Ł., Kamińska, M., Szymczyk, K., et al., 2016. Levels of selected persistent organic pollutants (PCB, PBDE) and pesticides in honey bee pollen sampled in Poland. PLoS One. 11(12), e0167487. DOI: https://doi.org/10.1371/journal.pone.0167487.
[92] Burgos-Aceves, M.A., Migliaccio, V., Di Gregorio, I., et al., 2021. 1, 1, 1-trichloro-2, 2-bis (p-chlorophenyl)-ethane (DDT) and 1, 1-Dichloro-2, 2-bis (p, p'-chlorophenyl) ethylene (DDE) as endocrine disruptors in human and wildlife: A possible implication of mitochondria. Environmental Toxicology and Pharmacology. 87, 103684. DOI: https://doi.org/10.1016/j.etap.2021.103684.
[93] Munier, M., Ayoub, M., Suteau, V., et al., 2021. In vitro effects of the endocrine disruptor p, p′ DDT on human choriogonadotropin/luteinizing hormone receptor signalling. Archives of Toxicology. 95, 1671–1681.
[94] Porta, M., Gasull, M., Pumarega, J., et al., 2022. Plasma concentrations of persistent organic pollutants and pancreatic cancer risk. International Journal of Epidemiology. 51(2), 479–490.
[95] Calaf, G.M., Ponce Cusi, R., Aguayo, F., et al., 2020. Endocrine disruptors from the environment affecting breast cancer. Oncology Letters. 20(1), 19–32.
[96] Harada, T., Takeda, M., Kojima, S., et al., 2016. Toxicity and carcinogenicity of dichlorodiphenyltrichloroethane (DDT). Toxicological Research. 32(1), 21–33. DOI: https://doi.org/10.5487/TR.2016.32.1.021.
[97] Richardson, J.R., Fitsanakis, V., Westerink, R.H., et al., 2019. Neurotoxicity of pesticides. Acta Neuropathologica. 138, 343–362. DOI: https://doi.org/10.1007/s00401-019-02033-9.
[98] Liu, X., Song, L., 2022. Quercetin protects human liver cells from o, p'-DDT-induced toxicity by suppressing Nrf2 and NADPH oxidase-regulated ROS production. Food and Chemical Toxicology. 161, 112849. DOI: https://doi.org/10.1016/j.fct.2022.112849.
[99] Martin, T.J., Whalen, M.M., 2017. Exposures to the environmental toxicants pentachlorophenol (PCP) and dichlorodiphenyltrichloroethane (DDT) modify secretion of interleukin 1-beta (IL-1β) from human immune cells. Archives of Toxicology. 91, 1795–1808.
[100] Sheriff, I., Debela, S.A., Mans-Davies, A., 2022. The listing of new persistent organic pollutants in the stockholm convention: its burden on developing countries. Environmental Science & Policy. 130, 9–15.
[101] Sathishkumar, P., Mohan, K., Ganesan, A.R., et al., 2021. Persistence, toxicological effect and ecological issues of endosulfan–a review. Journal of Hazardous Materials. 416, 125779. DOI: https://doi.org/10.1016/j.jhazmat.2021.125779.
[102] Mudhoo, A., Bhatnagar, A., Rantalankila, M., et al., 2019. Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: a review. Chemical Engineering Journal. 360, 912–928. DOI: https://doi.org/10.1016/j.cej.2018.12.055.
[103] Menezes, R.G., Qadir, T.F., Moin, A., et al., 2017. Endosulfan poisoning: An overview. Journal of Forensic and Legal Medicine. 51, 27–33. DOI: https://doi.org/10.1016/j.jflm.2017.07.008.
[104] Muñiz-González, A.B., Novo, M., Martínez-Guitarte, J.L., 2021. Persistent pesticides: effects of endosulfan at the molecular level on the aquatic invertebrate Chironomus riparius. Environmental Science and Pollution Research. 28, 31431–31446.
[105] Ganaie, H.A., 2021. Mechanism of Toxicity in Aquatic Life. In: Dar, G.H., Hakeem, K.R., Mehmood, M.A., et al. (eds.). Freshwater Pollution and Aquatic Ecosystems. Apple Academic Press: Palm Bay, FL, USA. pp. 109–130.
[106] Muazzam, B., Munawar, K., Khan, I.A., et al., 2019. Stress response and toxicity studies on zebrafish exposed to endosulfan and imidacloprid present in water. Journal of Water Supply: Research and Technology—AQUA. 68(8), 718–730.
[107] Khisroon, M., Hassan, N., Khan, A., et al., 2021. Assessment of DNA damage induced by endosulfan in grass carp (Ctenopharyngodon idella Valenciennes, 1844). Environmental Science and Pollution Research. 28, 15551–15555.
[108] Dar, S.A., Yousuf, A.R., Balkhi, M.U.H., et al., 2017. Podophyllum hexandrum ameliorates endosulfan-induced genotoxicity and mutagenicity in freshwater cyprinid fish crucian carp. Pharmaceutical Biology. 55(1), 173–183. DOI: https://doi.org/10.1080/13880209.2016.1233568.
[109] Mumuni, A.A., Sogbanmu, T.O., 2018. Embryotoxic, developmental and genotoxic evaluations of a endosulfan and deltamethrin mixture on the African sharptooth catfish (Clarias gariepinus). West African Journal of Applied Ecology. 26(1), 1–10.
[110] Da Cuña, R.H., Vázquez, G.R., Dorelle, L., et al., 2016. Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 187, 74–80.
[111] Martyniuk, C.J., Mehinto, A.C., Denslow, N.D., 2020. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Molecular and Cellular Endocrinology. 507, 110764. DOI: https://doi.org/10.1016/j.mce.2020.110764.
[112] Rehman, M.U., Mir, M.U.R., Ahmad, S.B., et al., 2016. Endosulfan, a global pesticide: A review of its toxicity on various aspects of fish biology. International Journal of General Medicine and Pharmacy. 5, 17–26.
[113] Noor, M.S., Nur'amin, H.W., Sanyoto, D.D., 2019. The seluang fish (Rasbora spp.) diet to improve neurotoxicity of endosulfan-induced intrauterine pup's brain through of oxidative mechanism. Clinical Nutrition Experimental. 28, 74–82.
[114] Dale, K., Rasinger, J.D., Ellingsen, S., 2021. Developmental neurotoxicity of endosulfan: modeling with zebrafish. In: Martin, C.R., Preedy, V.R., Rajendram, R. (eds.). Diagnosis, Management and Modeling of Neurodevelopmental Disorders. Academic Press: Cambridge, MA, USA. pp. 521–531.
[115] Islam, F.U., Jalali, S., Shafqat, M.N., et al., 2017. Endosulfan is toxic to the reproductive health of male freshwater fish, Cyprinion watsoni. The Science of Nature. 104, 1–10.
[116] Teta, C., Naik, Y.S., 2018. Endosulfan reduces fertilization success and causes abnormal embryo development to zebrafish. Toxicological & Environmental Chemistry. 100(4), 452–464.
[117] Milesi, M.M., Durando, M., Lorenz, V., et al., 2020. Postnatal exposure to endosulfan affects uterine development and fertility. Molecular and Cellular Endocrinology. 511, 110855. DOI: https://doi.org/10.1016/j.mce.2020.110855.
[118] Patočka, J., Wu, Q., França, T.C., et al., 2016. Clinical aspects of the poisoning by the pesticide endosulfan. Química Nova. 39, 987–994.
[119] Yan, J., Wang, D., Miao, J., et al., 2018. Discrepant effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on oxidative stress and energy metabolism in the livers and kidneys of mice. Chemosphere. 205, 223–233.
[120] Oyovwi, M.O., Ben-Azu, B., Tesi, E.P., et al., 2021. Repeated endosulfan exposure induces changes in neurochemicals, decreases ATPase transmembrane ionic-pumps, and increased oxidative/nitrosative stress in the brains of rats: Reversal by quercetin. Pesticide Biochemistry and Physiology. 175, 104833. DOI: https://doi.org/10.1016/j.pestbp.2021.104833.
[121] Vajargah, M.F., Namin, J.I., Mohsenpour, R., et al., 2021. Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Veterinary Research Communications. 45, 373–380. DOI: https://doi.org/10.1007/s11259-021-09818-y.
[122] Gupta, A., Sharma, B., 2023. Evaluation of levels of phosphatases in the lindane exposed fish, Channa punctatus. Journal Of Biomedical Research & Environmental Sciences. 4(3), 555–561. DOI: https://doi.org/10.37871/jbres1710.
[123] Yu, Y., Chen, H., Hua, X., et al., 2021. Long-term toxicity of lindane through oxidative stress and cell apoptosis in Caenorhabditis elegans. Environmental Pollution. 272, 116036. DOI: https://doi.org/10.1016/j.envpol.2020.116036.
[124] Palmerini, M.G., Zhurabekova, G., Balmagambetova, A., et al., 2017. The pesticide Lindane induces dose-dependent damage to granulosa cells in an in vitro culture. Reproductive Biology. 17(4), 349–356.
[125] Alsen, M., Vasan, V., Genden, E.M., et al., 2022. Correlation between lindane use and the incidence of thyroid cancer in the United States: an ecological study. International Journal of Environmental Research and Public Health. 19(20), 13158. DOI: https://doi.org/10.3390/ijerph192013158.
[126] Zhurabekova, G., Balmagambetova, A., Bianchi, S., et al., 2018. The toxicity of lindane in the female reproductive system: a review on the aral sea. Euromediterranean Biomedical Journal. 13(24), 104–108.
[127] Balmagambetova, A., Abdelazim, I.A., Zhurabekova, G., et al., 2017. Reproductive and health-related hazards of Lindane exposure in Aral Sea area. Environmental Disease. 2(3), 70–75. DOI: https://doi.org/10.3269/1970-5492.2018.13.24.
[128] Shanthi, T.R., Vasanthy, M., Mohamed Hatha, A.A., 2022. In: Vasanthy, M., Sivasankar, V., Sunitha, T.G. (eds.). Organic Pollutants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham, Switzerland. pp. 199–227. DOI: https://doi.org/10.1007/978-3-030-72441-2_8.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 El Mostapha Albou, Ali El Mansour, Abdellali Abdaoui, Ali Ait Boughrous

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.