Best Practices in Construction 4.0 – Catalysts of digital innovations (Part II)


  • Bianca Christina Weber-Lewerenz Institute of Sustainability in Civil Engineering INaB, Faculty of Civil Engineering, RWTH Aachen University
  • Marzia Traverso

    Institute of Sustainability in Civil Engineering (INaB), RWTH Aachen University, 52062, Germany



The study examines corporate strategies from different angles, defines potential fields of application and works out existing empirical values and trends in the digitization process of the building sector. It highlights the unintended consequences of technological development and offers concrete practical approaches for responsible use. Using the qualitative research method, the study concludes that digital methods, such as BIM and Digital Twins, and Artificial Intelligence (AI) can add value, significantly reduce resources and increase sustainability. The study is part of a larger primary research on Corporate Digital Responsibility (CDR) in Construction 4.0; it identifies, analyzes and systematically evaluates the pillars of a sustainable digital transformation, especially in the Construction Industry. The holistic, interdisciplinary view of this study aims to provide orientation for small to medium-sized companies (SMEs) developing their individual digital strategy. An outline of the necessary prerequisites but also design options, as they result from the evaluation of expert interviews and literature research, supports companies in the design of Construction 4.0 that is in-line with the needs of people, society and the environment and shaping more economically efficient building life cycles. Part II on Best Practices in Construction 4.0 follows up on the published Part I. It highlights that digital transformation has also reached the traditionally small-scale AEC industry (Architecture, Engineering and Construction) and catalyzes the variety of innovations.


Digitization, AI, Digital Transformation, Best Practices, Smart Cities, Circular Economy, Cradle-to-Cradle, Construction 4.0


[1] ElMassah, S., Mohieldin, M., 2020. Digital transformation and localizing the Sustainable Development Goals (SDGs). Journal of Ecological Economics. 169, 106490.

[2] DOI:

[3] Lopes de Sousa Jabbour, A.B., Jabbour, C.J.C., Godinho Filho, M., et al., 2018. Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations. Annals of Operations Research. 270, 273-286.

[4] DOI:

[5] BMWi, 2019. Einsatz von Künstlicher Intelligenz in der Deutschen Wirtschaft Stand der KI-Nutzung im Jahr 2019, Studie des Bundesministeriums für Wirtschaft und Energie (German) [Use of artificial intelligence in the German economy Status of AI use in 2019, study by the Federal Ministry for Economic Affairs and Energy]. p. 20. [Internet] [cited 2021 May 6]. Available from:,17%2C8%20%25%20erheblich%20h%C3%B6her

[6] BMWi, 2019. Einsatz von Künstlicher Intelligenz in der Deutschen Wirtschaft Stand der KI-Nutzung im Jahr 2019, Studie des Bundesministeriums für Wirtschaft und Energie (German) [Use of artificial intelligence in the German economy Status of AI use in 2019, study by the Federal Ministry for Economic Affairs and Energy]. p. 28. [Internet] [cited 2021 May 6]. Available from:,17%2C8%20%25%20erheblich%20h%C3%B6her

[7] Gomez-Trujillo, A.M., Gonzalez-Perez, M.A., 2021. Digital transformation as a strategy to reach sustainability. Smart and Sustainable Built Environment. 11(4), 1137-1162.

[8] DOI:

[9] Feroz, A.K., Zo, H.J., Chiravuri, A., 2021. Digital transformation and environmental sustainability: A review and research agenda. Journal for Sustainability. 13(3), 1530.

[10] DOI:

[11] Weber-Lewerenz, B., Vasiliu-Feltes, I., 2022. Empowering digital innovation by diverse leadership in ICT—A roadmap to a better value system in computer algorithms. Humanistic Management Journal. 7(1), 117-134.

[12] DOI:

[13] Lo, C.K., Chen, C.H., Zhong, R.Y., 2021. A review of digital twin in product design and development. Journal of Advanced Engineering Informatics. 48, 101297.

[14] DOI:

[15] Ye, Z.P., Yang, J.Q., Zhong, N., et al., 2020. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Journal of Science of the Total Environment. 699, 134279.

[16] DOI:

[17] Ernstsen, S.N., Whyte, J., Thuesen, C., et al., 2021. How innovation champions frame the future: Three visions for digital transformation of construction. Journal of Construction Engineering and Management (ASCE). 147(1).

[18] DOI:

[19] Leiringer, R., Cardellino, P., 2010. Tables of the expected: Investigating the rhetorical strategies of innovation champions. Journal of Construction Management and Economics. 26(10), 1043-1054.

[20] DOI:

[21] Xue, X., Zhang, R., Yang, R., et al., 2014. Innovation in construction: A critical review and future research. International Journal of Innovation Science. 6(2), 111-126.

[22] DOI:

[23] Grunwald, A., Hillerbrand, R., 2021. Überblick über die Technikethik (German) [Overview on technical ethics handbook technical ethics]. J.B. Metzler Publishing: Stuttgart.

[24] DOI:

[25] Grunwald, A., 2020. Verantwortung und Technik: zum Wandel des Verantwortungsbegriffs in der Technikethik (German) [Responsibility and technology: On the change in the concept of responsibility in technology ethics]. Springer Publishing: Berlin, Heidelberg.

[26] DOI:

[27] Jonas, H., 1987. Warum die Technik ein Gegenstand für die Ethik ist: fünf Gründe. Technik und Ethik (German) [Why technology is a subject for ethics: Five reasons. Technology and ethics]. 2, 81-91.

[28] Grunwald, A., 2001. Technikfolgenabschätzung: Eine Einführung (German) [Technical assessment: An introduction]. Sigma Publishing: Rawalpindi.

[29] Holz, H.H., Hubig, C., 2013. Technik-und Wissenschaftsethik. Ein Leitfaden (German) [Technical and economical ethics: A guide]. Nachdenken über Technik. Nomos Verlagsgesellschaft mbH & Co. KG Publishing: Baden-Baden. pp. 449-454.

[30] Hubig, C., 2015. Einleitung (German) [Introduction]. Die Kunst des Möglichen I. Transcript Publishing: Bielefeld. pp. 15-36.

[31] DOI:

[32] Hubig, C., 2015. Die Kunst des Möglichen III: Grundlinien einer dialektischen Philosophie der Technik (German) [The art of the possible III: Basic lines of a dialectical philosophy of technology]. Transcript Publishing: Bielefeld.

[33] DOI:

[34] Hubig, C., 2004. Ethische Ingenieurverantwortung. Handlungsspielräume und Perspektiven der Kodifizierung (German) [Ethical engineering responsibility. Scope for action and perspectives of codification]. Verein Deutscher Ingenieure: Düsseldorf.

[35] Blankenbach, J., Becker, R., 2020. BIM und die Digitalisierung im Bauwesen (German) [BIM and digitization in construction]. Handbook Industry 4.0: Law, Technic, Society. Springer Publishing: Berlin, Heidelberg.

[36] DOI:

[37] Wieland, J., 2014. Handbuch Compliance-Management: Konzeptionelle Grundlagen, praktische Erfolgsfaktoren, globale Herausforderungen (German) [Compliance management handbook: Conceptual foundations, practical success factors, global challenges]. Erich Schmidt Publishing: Berlin.

[38] Eming, K., 2011. Compliance als Problem der Wirtschafts- und Unternehmensethik (German) [Compliance as a problem of business and corporate ethics]. Interdisciplinary Aspects of Compliance. Nomos Verlagsgesellschaft mbH & Co. KG Publishing: Baden-Baden. pp. 39-64.

[39] Hauschka, C.E., 2016. Corporate compliance. C.H. Beck Publishing: Munich.

[40] Sun, M.L., Zhang, J., 2020. Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment. Journal for Computer Communications. 149, 332-342.

[41] DOI:

[42] Region Stuttgart, 2022. Symposium Zukunft Bauen | 3. Symposium [Video]. [cited 2023 Mar 30]. Available from:

[43] Schranz, C., 2022. Mit (Digital-) Kompetenz in die Zukunft. Standpunkt (German) [With (digital) competence into the future. Taking position]. Der Bauingenieur. 97(4), A3.

[44] DOI:

[45] Adam, C., 2020. Mit solider Grundlagenausbildung in eine (bau-) dynamische Zukunft (German) [With solid basic training in a (construction) dynamic future]. Der Bauingenieur. 95(12), A3.

[46] DOI:

[47] Bundesministerium des Innern, für Bau und Heimat BMWi, 2021. Modellprojekte Smart Cities 2021 Gemeinsam aus der Krise—Raum für Zukunft. Studie des Bundesministeriums für Wirtschaft und Energie (BMWi) (German) [Model projects Smart Cities 2021. Together out of the crisis—room for the future. Study by the Federal Ministry for Economic Affairs and Energy (BMWi)] [Internet] [cited 2022 Mar 15]. Available from:

[48] ICLEI—Local Governments for Sustainability, 2021. The European Circular Cities Declaration [Internet] [cited 2022 May 6]. Available from:

[49] Sarc, R., Curtis, A., Kandlbauer, L., et al., 2019. Digitalisation and intelligent robotics in value chain of circular economy-oriented waste management—A review. Journal for Waste Management. 95, 476-492.

[50] DOI:

[51] Goralski, M.A., Tan, T.K., 2020. Artificial intelligence and sustainable development. The International Journal of Management Education. 18(1), 100330.

[52] DOI:

[53] Council of the European Union, 2016. Schlussfolgerungen des Rates zu einer Städteagenda für die EU (German) [Council conclusions on an urban agenda for the EU] [Internet] [cited 2022 May 6]. Available from:

[54] Federal Institute for Building, Urban and Spatial Research, 2021. Smart City Charta [Internet] [cited 2022 May 6]. Available from:

[55] World Economic Forum WEF, 2021. Governing Smart Cities Report. Governing Smart Cities: Policy Benchmarks for Ethical and Responsible Smart City Development. White Paper July 2021 [Internet] [cited 2022 May 6]. Available from:

[56] Braungart, M., McDonough, W., 2014. Cradle to Cradle: Einfach intelligent produzieren (German) [Cradle to cradle: Simply produce intelligent]. Piper Verlag: München.

[57] Jehle, P., 2022. Inkonsequenz bremst Betonrecycling (German) [Inconsistency slows down concrete recycling]. Der Bauingenieur. 97(4), A16.

[58] DOI:

[59] Fajga, K.W., 2022. Ehrgeizige Ziele gesetzt. Interview mit Fred Cortes (German) [Ambitious goals set. Interview with Fred Cortes]. Allgemeine Bauzeitung ABZ. 18, 3.

[60] Giannakidis, A., Weber-Lewerenz, B., Stolze, D., 2021. KI im Bauwesen in Deutschland. Forschungsstudie des Fraunhofer Instituts Stuttgart IAO (German) [AI in construction in Germany. Research study by the Fraunhofer Institute Stuttgart IAO]. Fraunhofer Piublishing: München. [cited 2022 May 6]. Available from:

[61] Rosha, A., Lobanova, L., 2022. Ethical responsibility of a company in the context of digital transformation of work: Conceptual model. Journal of Sustainability. 14(18).

[62] DOI:

[63] Del Rosario, P., Backes, J.G., Traverso, M., 2022. Level(s)—Eine gemeinsame europäische Methode zur Bewertung der Nachhaltigkeitsleistung von Gebäuden (German) [Level(s)—A common European method for assessing the sustainability performance of buildings]. Der Bauingenieur. 11(3), 385-392.

[64] DOI:

[65] Weber-Lewerenz, B., 2022. Thinking otherwise: Integrating existing buildings and monument protection in smart cities—Experience shared from user practice. Impact of Digital Twins in Smart Cities Development. IGI Global Publishing: Hershey.

[66] DOI:

[67] Razmjoo, A., Østergaard, P.A., Denaï, M., et al., 2021. Effective policies to overcome barriers in the development of smart cities. Journal of Energy Research & Social Science. 79, 102175.

[68] DOI:

[69] Agnusdei, G., Elia, V., Gnoni, M.G., 2021. Is digital twin technology supporting safety management? A bibliometric and systematic review. Journal of Applied Sciences. 11(6), 2767.

[70] DOI:

[71] Kirchschläger, P.G., 2021. Ethische Verantwortung in der digitalen Transformation (German) [Ethical responsibility in the digital transformation]. Journal of Risk, Fraud and Compliance ZRFC. 9(6), 253.

[72] Pilgrim, H., 2017. The dark side of digitalization: Will Industry 4.0 create new raw materials demands? PowerShift e.V. Publishing: Berlin.

[73] European Commission of Regions, 2021. Stellungnahme zum Aktionsplan für kritische Rohstoffe (German) [Opinion on the action plan for critical raw materials] [Internet] [cited 2022 Jul 13]. Available from:

[74] Elshkaki, A., Graedel, T.E., Ciacci, L., et al., 2016. Copper demand, supply, and associated energy use to 2050. Journal of Global Environmental. 39, 305-315.

[75] DOI:

[76] DERA Deutsche Rohstoffagentur, 2016. Rohstoffe für Zukunftstechnologien 2016. Bundesanstalt für Geowissenschaften und Rohstoffe BGR (German) [Raw materials for future technologies 2016. Federal Institute for Geosciences and Natural Resources] [Internet] [cited 2022 May 6]. Available from:

[77] Höfer, T., Bierwirth, S., Madlener, R., 2020. Energie-Mehrverbrauch in Rechenzentren bei Einführung des 5G Standards. Konferenzpapier zur Tagung “Nachhaltige Rechenzentren—Chancen und Entwicklungsmöglichkeiten am Standort Baden-Württemberg” (German) [Additional energy consumption in data centers when the 5G standard is introduced. Conference paper for the conference “Sustainable data centers—opportunities and development opportunities in Baden-Württemberg”] [Internet] [cited 2022 May 6]. Available from:

[78] Rüttinger, L., 2016. Fallstudien zu Umwelt- und Sozialauswirkungen der Bauxitgewinnung und -weiterverarbeitung in der Boké und Kindia-Region, Guinea (German) [Case studies on environmental and social impacts of bauxite mining and processing in the Boké and Kindia region, Guinea]. Adelphi (Edt.) Publishing: Berlin.

[79] Fiedler, M., 2022. BIM und Baubehörde—ein Erfahrungsbericht. Strukturierte Daten für die digitale Zusammenarbeit im Infrastrukturbau: BIMSTRUCT (German) [BIM and building authorities—a field report. Structured data for digital collaboration in infrastructure construction: BIMSTRUCT] [Internet] [cited 2022 May 6]. Available from:

[80] Frieske, B. Huber, A., Stieler, S., et al., 2022. Zukunftsfähige Lieferketten und neue Wertschöpfungsstrukturen in der Automobilindustrie (German) [Sustainable supply chains and new value creation structures in the automotive industry]. Project report, Institute for automobile concepts. p. 247. Available from:

[81] Gharaibeh, L., Eriksson, K.M., Lantz, B., et al., 2022. Toward digital construction supply chain-based Industry 4.0 solutions: Scientometric-thematic analysis. Smart and Sustainable Built Environment. (Preprint).

[82] DOI:

[83] Tezel, A., Papadonikolaki, E., Yitmen, I., et al., 2020. Preparing construction supply chains for blockchain technology: An investigation of its potential and future directions. Journal of Frontiers of Engineering Management. 7(4). 547-563.

[84] DOI:

[85] European Commission, 2022. New European Innovation Agenda [Internet] [cited 2022 Jul 13]. Available from:

[86] European Commission, 2022. Neue Strategische Vorausschau. Verzahnung von grünem und digitalem Wandel im neuen geopolitischen Kontext (German) [New strategic forecast: Dovetailing of green and digital change in the new geopolitical context] [Internet] [cited 2022 Jul 13]. Available from:

[87] Building Europe’s Digital Sovereignty Conference, 2022. Task Force on Digital Commons [Internet] [cited 2022 Jul 13]. Available from:

[88] Weber-Lewerenz, B., 2021. Die unternehmerisch verantwortungsvolle Digitalisierung im Bauwesen (German) [CDR in construction]. Der Bauingenieur. 96(01-02), 19-25.

[89] DOI:

[90] German Ethics Council, 2023. Humans and Machines—Challenges of Artificial Intelligence [Internet] [cited 2023 Apr 6]. Available from:

[91] Future of Life Institute, 2023. Pause Giant AI Experiments: An Open Letter [Internet] [cited 2023 Apr 6]. Available from:


How to Cite

Weber-Lewerenz, B. C., & Traverso, M. (2023). Best Practices in Construction 4.0 – Catalysts of digital innovations (Part II). Journal of Architectural Environment & Structural Engineering Research, 6(2), 1–21.





Download data is not yet available.