-
18306
-
2787
-
2115
-
2065
-
1571
Road Network Analysis with GIS and GRASS-GIS: A Probabilistic Approach
DOI:
https://doi.org/10.30564/jgr.v4i4.3759Abstract
In this paper we show how it can be useful to the probability of intersections in the determination of a classification rule for raster conversions in Geographical Information System (GIS) and GRASS GIS for the Road Network Analysis (RNA). We use a geometric probabilities approach for irregular path considering these results for transportation planning operations. We study two particular problems with irregular tessellations, in order to have a situation more realistic respect to map GIS and considering also the maximum value of probability to narrow the range of possible probability values.
Keywords:
Road network analysis; GIS; GRASS GIS; Probabilistic approach; Irregular tessellationReferences
[1] D. Barilla, G. Caristi, A. Puglisi, 2014, A Buffon-Laplace type problems for an irregular lattice with maximum probability, Applied Mathematical Sciences,vol. 8, no. 165, pp. 8287-8293.
[2] V. Bonanzinga and L. Sorrenti, 2008, Geometric Probabilities for three-dimensional tessellations and raster classifications, Serie on Advances in mathematics for Applied Sciences, vol. 82, pp.111-122.
[3] B. Boots, 1998, Spatial tessellations, in Geographic Information Systems: Priciples, Techniques Iussues,2nd Edition, edited by P.A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind (New york:Wiley & Sons), pp. 503-526.
[4] P. A. Burrough and R. A. McDonnel, 1998, Principles of Geographical Information Systems,Oxford University Press.
[5] G. Caristi, V. Fiorani, S. Lo Bosco and A. Vieni,2019, Project management and optimization processes choices to maximize resource allocation results,Applied Mathematical Sciences, vol. 13 (17), pp.845-857.
[6] A. Duma and M. Stoka, 2000, Geometric probabilities for convex bodies of revolution in the euclidean space E3, rend. Circ. Mat. Palermo, serie II Suppl.65, pp. 109-115.
[7] A. Duma and M. Stoka, 2004, Goemetric probabilities for quadratic lattice with quadratic obstacles,Ann. I.S.U.P., 48/1-2, pp. 19-42.
[8] M. F. Gooldchild and A. M. Shotridge, 2002, Geometric probability and GIS: some applications for the statistics of intersections, International Journal of geographical Information Sciences, 16/3, pp. 227-243.
[9] H. R. Kirby, 1997, Buffon’s Needle and probability of intercepting short-distance trips by multiple screen-line surveys, Geographical Analysis, 29, pp.64-71.
[10] D. A. Klain and G. C. Rota, 1997, Introduction to Geometric Probability, Cambridge University Press.
[11] H. Mitasova and M. Neteler, 2004, Open souces GIS:a GRASS GIS approach, 2nd Edition,Kluwer Academic Publishers.
[12] H. Poincaré, Calcul des probabilités, 1912, 2nd ed.,Gauthier-Villard, Paris.
[13] L. A. Santalò, 1976, Integral Geometry and Geometric Probability, Addison Wesley, Mass.
[14] P. A. Rogerson, 1990, Buffon’s needle and the estimation of migration distances, Mathematical Population Studies, 2, pp. 229-238.
[15] M. Stoka, 1982, Probabilità e Geometria, Herbita.
[16] M. Stoka, 1975-1976, Probabilitiés géométriques de type Buffon dans le plan euclidien, Atti Acc. Sci. Torino, 110, pp. 53-59.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2021 Giuseppe Caristi, Roberto Guarneri, Sabrin Lo Bosco
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.