
The Effects of Vegetation & Bare Land on Thermal Characteristics: A Case Study of Three Indian Metropolitan Areas
DOI:
https://doi.org/10.30564/re.v7i4.9639Abstract
Urban expansion in India’s metropolitan regions has led to significant alterations in land surface composition, which directly affect local thermal environments. Vegetation loss and the emergence of bare land surfaces are increasingly recognized as key contributors to urban heat, yet comparative, multi-city studies addressing their combined effects remain scarce. This study analyzes the influence of vegetation and bare land on land surface temperature (LST) across three major Indian cities—Delhi, Lucknow, and Ahmedabad in 2023. Satellite imagery was used to extract Normalized Difference Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), and LST values. Statistical correlation and spatial analysis techniques were applied to evaluate thermal variations across land cover types. NDVI was negatively correlated with LST (r = −0.68 to −0.81), indicating the cooling role of vegetation, whereas NDBaI showed a positive correlation with LST (r = 0.59 to 0.74), highlighting the warming effect of bare surfaces. Delhi exhibited the highest maximum LST (47.45 °C), while Lucknow recorded the highest minimum (38.63 °C). Across all cities and timeframes, vegetated areas consistently showed lower surface temperatures compared to bare or built-up regions. The findings emphasize the importance of vegetation in reducing urban heat and the thermal risk posed by increasing bare land. Strengthening green infrastructure and minimizing exposed soil in urban areas can serve as effective strategies for enhancing thermal comfort and climate resilience in Indian cities.
Keywords:
Vegetation; Urban Heat; Indices; Microclimate; Bare LandReferences
[1] Voukkali, I., Papamichael, I., Loizia, P., et al., 2023. Urbanization and solid waste production: prospects and challenges. Environmental Science and Pollution Research, 31(12), 17678–17689. DOI: https://doi.org/10.1007/s11356-023-27670-2
[2] Zhang, X., Han, L., Wei, H., et al., 2022. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. Journal of Cleaner Production, 346, 130988. DOI: https://doi.org/10.1016/j.jclepro.2022.130988
[3] Strokal, M., Bai, Z., Franssen, W., et al., 2021. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. Npj Urban Sustainability, 1(1). https://doi.org/10.1038/s42949-021-00026-w
[4] Krüger, E., Gobo, J.P.A., Tejas, G.T., et al., 2024. The impact of urbanization on heat stress in Brazil: A multi-city study. Urban Climate, 53, 101827. https://doi.org/10.1016/j.uclim.2024.101827
[5] Taha, H., 1997. Urban climates and heat islands: Albedo, Evapotranspiration, and Anthropogenic heat. Energy and Buildings, 25(2), 99-103. DOI: https://doi.org/10.1016/s0378-7788(96)00999-1
[6] Tan, J., Zheng, Y., Tang, X., et al., 2009. The Urban Heat Island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75-84. DOI: https://doi.org/10.1007/s00484-009-0256-x
[7] Arifwidodo, S., Tanaka, T., 2015. The Characteristics of Urban Heat Island in Bangkok, Thailand. *Procedia - Social and Behavioural Sciences, 195, 423-428. DOI: https://doi.org/10.1016/j.sbspro.2015.06.484
[8] Fu, Q., Zheng, Z., Sarker, M.N.I., et al., 2024. Combating urban heat: Systematic review of urban resilience and adaptation strategies. Heliyon, 10(17), e37001. DOI: https://doi.org/10.1016/j.heliyon.2024.e37001
[9] Piracha, A., Chaudhary, M.T., 2022. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability, 14(15), 9234. DOI: https://doi.org/10.3390/su14159234
[10] Shahmohamadi, P., Che-Ani, A., Etessam, I., et al., 2011. Healthy environment: The need to mitigate urban heat island effects on human health. Procedia Engineering, 20, 61–70. DOI: https://doi.org/10.1016/j.proeng.2011.11.139
[11] Huang, H., Yang, H., Deng, X., et al., 2020. Influencing mechanisms of urban heat islands on respiratory diseases. Iranian Journal of Public Health. DOI: https://doi.org/10.18502/ijph.v48i9.3023
[12] Li, X., Zhou, Y., Yu, S., et al., 2019. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy, 174, 407–419. DOI: https://doi.org/10.1016/j.energy.2019.02.183
[13] Yuan, Y., Li, X., Wang, H., et al., 2024. Unraveling the global economic and mortality effects of rising urban heat island intensity. Sustainable Cities and Society, 116, 105902. DOI: https://doi.org/10.1016/j.scs.2024.105902
[14] Tuczek, M., Degirmenci, K., Desouza, K. C., et al., 2022. Mitigating urban heat with optimal distribution of vegetation and buildings. Urban Climate, 44, 101208. DOI: https://doi.org/10.1016/j.uclim.2022.101208
[15] Gloria, S.J., Gnanasekaran, S.P., 2024. Impact of urban vegetation loss on urban heat islands: A case study of Chennai Metropolitan Area. Indian Journal of Science and Technology, 17(2), 134–141. DOI: https://doi.org/10.17485/ijst/v17i2.1071
[16] Xian, G., Shi, H., Auch, R., et al., 2021. The effects of urban land cover dynamics on urban heat Island intensity and temporal trends. GIScience & Remote Sensing, 58(4), 501–515. DOI: https://doi.org/10.1080/15481603.2021.1903282
[17] Teimouri, R., Karbasi, P., 2024. Analyzing the contribution of urban land uses to the formation of urban heat islands in Urmia City. Urban Science, 8(4), 208. DOI: https://doi.org/10.3390/urbansci8040208
[18] Montaseri, M., Masoodian, S., Guo, X., 2022. Evaluation of surface urban heat island intensity in arid environments (case study: Isfahan metropolitan area). DOI: https://doi.org/10.21203/rs.3.rs-1591895/v1
[19] Ragheb, A., El-Darwish, I. I., Sherif, A., 2016. Microclimate and human comfort considerations in planning a historic urban quarter. International Journal of Sustainable Built Environment, 5(1), 156–167. DOI: https://doi.org/10.1016/j.ijsbe.2016.03.003
[20] Kouklis, G., Yiannakou, A., 2021. The contribution of urban morphology to the formation of the microclimate in compact urban cores: a study in the city center of Thessaloniki. Urban Science, 5(2), 37. https://doi.org/10.3390/urbansci5020037
[21] Patra, S., Sahoo, S., Mishra, P., et al., 2018. Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. Journal of Urban Management, 7(2), 70–84. DOI: https://doi.org/10.1016/j.jum.2018.04.006
[22] Gupta, R.K., 2012. Temporal and spatial variations of urban heat island effect in Jaipur city using satellite data. Environment and Urbanization Asia, 3(2), 359-374. DOI: https://doi.org/10.1177/0975425312473232
[23] Gupta, R.K., 2024. Identifying urban hotspots and cold spots in Delhi using the Biophysical Landscape framework. Ecology, Economy and Society--the INSEE Journal, 7(1), 137–155. DOI: https://doi.org/10.37773/ees.v7i1.954
[24] Stone, B., Hess, J., Frumkin, H., 2010. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities?. Environmental Health Perspectives, 118(10), 1425-1428. DOI: https://doi.org/10.1289/ehp.0901879
[25] Taleghani, M., Kleerekoper, L., Tenpierik, M., et al., 2015. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83, 65-78. DOI: https://doi.org/10.1016/j.buildenv.2014.03.014
[26] He, Q., Reith, A., 2023. A study on the impact of green infrastructure on microclimate and thermal comfort. Pollack Periodica, 18(1), 42-48. DOI: https://doi.org/10.1556/606.2022.00668
[27] Georgi, J., Dimitriou, D., 2010. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Building and Environment, 45(6), 1401-1414. DOI: https://doi.org/10.1016/j.buildenv.2009.12.003
[28] Mutani, G. and Todeschi, V., 2021. Roof-integrated green technologies, energy saving and outdoor thermal comfort: insights from a case study in urban environment. International Journal of Sustainable Development and Planning, 16(1), 13-23. DOI: https://doi.org/10.18280/ijsdp.160102
[29] Paul, M., Florian, S., 2017. Comparasion of NDBI and NDVI as indicators of surface Urban heat island effect in Landsat 8 Imagery: a case study of IASI. Present Environment and Sustainable Development, 11(2), 141–150. DOI: https://doi.org/10.1515/pesd-2017-0032
[30] Chen, X., Zhang, Y., 2017. Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustainable Cities and Society, 32, 87–99. DOI: https://doi.org/10.1016/j.scs.2017.03.013
[31] Ahmad, M., Saqib, M., Ahmad, S.N., et al., 2025. Normalized difference spectral indices and urban land cover as indicators of urban heat island effect: a case study of Patna Municipal Corporation. Geology Ecology and Landscapes, 1–21. DOI: https://doi.org/10.1080/24749508.2025.2451479
[32] Roy, B., Bari, E., 2022. Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine. Heliyon, 8(9), e10668. DOI: https://doi.org/10.1016/j.heliyon.2022.e10668
[33] Bagyaraj, M., Senapathi, V., Karthikeyan, S., et al., 2023. A study of urban heat island effects using remote sensing and GIS techniques in Kancheepuram, Tamil Nadu, India. Urban Climate, 51, 101597. DOI: https://doi.org/10.1016/j.uclim.2023.101597
[34] Cafaro, R., Cardone, B., D’Ambrosio, V., et al., 2024. A new GIS-Based framework to detect urban heat islands and its application on the city of Naples (Italy). Land, 13(8), 1253. DOI: https://doi.org/10.3390/land13081253
[35] Jumari, N.a.S.K., Ahmed, A.N., Huang, Y.F., et al., 2023. Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8), e18424. DOI: https://doi.org/10.1016/j.heliyon.2023.e18424
[36] Zhu, Z., Woodcock, C., 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171. DOI: https://doi.org/10.1016/j.rse.2014.01.011
[37] Huang, C., Kim, S., Song, K., et al., 2009. Assessment of Paraguay’s forest cover change using Landsat observations. Global and Planetary Change, 67(1-2), 1-12. https://doi.org/10.1016/j.gloplacha.2008.12.009
[38] Hassan, S., Edicha, J., Kabiru, U., 2016. Analysis of the Pattern of Land Degradation in Okaba, Kogi State, Nigeria. Annals of the Social Science Academy of Nigeria, 20(1). DOI: https://doi.org/10.36108/ssan/1502.02.0140
[39] Tao, Y., Lan, G., She, L., et. al., 2018. Dynamic monitoring of land cover in Dongting lake area between 1995–2015 with Landsat imagery. The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XLII-3, 1651-1656. DOI: https://doi.org/10.5194/isprs-archives-xlii-3-1651-2018
[40] Spruce, J., Smoot, J., Ellis, J., et al., 2013. Geospatial method for computing supplemental multi-decadal US coastal land use and land cover classification products, using Landsat data and c-cap products. Geocarto International, 29(5), 470-485. DOI: https://doi.org/10.1080/10106049.2013.798357
[41] Jeongmook, P., Sim, W., Park, J., et al., 2019. Object-based land cover change detection and landscape structure analysis of demilitarized zone in Korea. Sensors and Materials, 31(11), 3733. DOI: https://doi.org/10.18494/sam.2019.2434
[42] Zhang, H., Zhai, F., Zhang, G., et al., 2018. Daily air temperature estimation on glacier surfaces in the Tibetan plateau using MODIS LST data. Journal of Glaciology, 64(243), 132-147. DOI: https://doi.org/10.1017/jog.2018.6
[43] Yang, B., Chen, S., Liu, Q., et al., 2011. Land surface temperature and emissivity retrieval by integrating MODIS data onboard terra and aqua satellites. International Journal of Remote Sensing, 32(5), 1449-1469. DOI: https://doi.org/10.1080/01431160903559754
[44] Phan, T., Kappas, M., Degener, J., 2016. Estimating daily maximum and minimum land air surface temperature using Modis land surface temperature data and ground truth data in Northern Vietnam. Remote Sensing, 8(12), 1002. DOI: https://doi.org/10.3390/rs8121002
[45] Sobrino, J.A., Irakulis, I., 2020. A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data. Remote Sensing, 12(12), 2052. DOI: https://doi.org/10.3390/rs12122052
[46] Toy, S., Yılmaz, S., Yılmaz, H., 2007. Determination of bioclimatic comfort in three different land uses in the city of Erzurum, Turkey. Building and Environment, 42(3), 1315–1318. DOI: https://doi.org/10.1016/j.buildenv.2005.10.031
[47] Liu, L., Zhang, Y., 2011. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote sensing, 3(7), 1535-1552.
[48] Liu, W., Zhao, H., Sun, S., et al., 2022. Green space cooling effect and contribution to mitigate heat island effect of surrounding communities in Beijing Metropolitan Area. Frontiers in Public Health, 10. DOI: https://doi.org/10.3389/fpubh.2022.870403
[49] Schwaab, J., Meier, R., Mussetti, G., et al., 2021. The role of urban trees in reducing land surface temperatures in European cities. Nature Communications, 12(1). DOI: https://doi.org/10.1038/s41467-021-26768-w
[50] Kirschner, V., Macků, K., Moravec, D., et al., 2023. Measuring the relationships between various urban green spaces and local climate zones. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-36850-6
[51] Rizki, A.R., Tumuyu, S.S., Rushayati, S.B., 2024. The impact of urban green space on the urban Heat Island phenomenon – a study case in East Jakarta, Indonesia. Geoplanning Journal of Geomatics and Planning, 11(1), 31–42. DOI: https://doi.org/10.14710/geoplanning.11.1.31-42
[52] Reed, B., Brown, J., VanderZee, D., et al., 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5(5), 703-714. DOI: https://doi.org/10.2307/3235884
[53] Huang, X., Zhang, T., Yi, G., et al., 2019. Dynamic changes of NDVI in the growing season of the Tibetan plateau during the past 17 years and its response to climate change. International Journal of Environmental Research and Public Health, 16(18), 3452. DOI: https://doi.org/10.3390/ijerph16183452
[54] Piao, S., Wang, X., Ciais, P., et al., 2011. Changes in satellite‐derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10), 3228-3239. DOI: https://doi.org/10.1111/j.1365-2486.2011.02419.x
[55] Mao, D., Wang, Z., Liu, L., et al., 2012. Integrating AVHRR and MODIS data to monitor ndvi changes and their relationships with climatic parameters in northeast china. International Journal of Applied Earth Observation and Geoinformation, 18, 528-536. DOI: https://doi.org/10.1016/j.jag.2011.10.007
[56] Zhou, Y., Yang, G., Wang, S., et al., 2014. A new index for mapping built-up and bare land areas from Landsat-8 OLI data. Remote Sensing Letters, 5(10), 862–871. DOI: https://doi.org/10.1080/2150704x.2014.973996
[57] Chen, X.L., Zhao, H.M., Li, P.X., et al., 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133-146. DOI: https://doi.org/10.1016/j.rse.2005.11.016
[58] Moghbel, M., Shamsipour, A., 2019. Spatial-temporal analysis of the environmental effects of urban heat islands in Tehran. Sustainable Cities and Society, 44, 404-413. DOI: https://doi.org/10.1016/j.scs.2018.10.006
[59] Bokaie, M., Zarkesh, M.K., Arasteh, P.D., et. al., 2016. Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran. Sustainable Cities and Society, 23, 94-104. DOI: https://doi.org/10.1016/j.scs.2016.03.009
[60] Baronian, A., Darvishi Boloorani, A., Papi, R., 2024. Assessing the impact of urbanization and land use changes on surface urban heat islands in Khuzestan Province using remote sensing. Environmental Monitoring and Assessment, 196(1), 45. DOI: https://doi.org/10.1007/s10661-023-12215-4
[61] Verma, P., Garg, P.K., 2021. Urban heat island effect assessment for Lucknow City using geospatial techniques. Geocarto International, 36(15), 1737-1755. DOI: https://doi.org/10.1080/10106049.2019.1659424
[62] Yang, J., Wang, Y., Xiu, C., et al., 2017. Optimizing local climate zones to mitigate urban heat island effect in human settlements. Journal of Cleaner Production, 165, 1042-1050. DOI: https://doi.org/10.1016/j.jclepro.2017.07.236
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2025 Arpit Gupta, Rupesh Kumar Gupta, Grinedge Yadav, Nani Gopal Mandal

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.