A Comparative Study of Fuzzy Aggregation Strategies in Modeling the Syntax Pragmatics Interface

Authors

  • Rustam

    Telecommunication Engineering Study Program, School of Electrical Engineering, Telkom University, West Java 40257, Indonesia

DOI:

https://doi.org/10.30564/fls.v7i10.11031
Received: 12 July 2025 | Revised: 8 August 2025 | Accepted: 15 August 2025 | Published Online: 16 October 2025

Abstract

Traditional approaches to grammaticality often rely on binary judgments, overlooking the gradient and context sensitive nature of linguistic acceptability, particularly at the syntax pragmatics interface. Fuzzy grammar models attempt to capture this nuance by assigning degrees of membership; however, most employ a fixed aggregation strategy, typically the minimum operator, to combine syntactic and pragmatic evaluations. This study addresses the research question: How do different fuzzy aggregation operators influence grammatical acceptability judgments at the syntax pragmatics interface? We introduce a comparative framework that systematically evaluates four fuzzy aggregation operators, namely minimum, product, arithmetic mean, and weighted average. Using a pilot dataset of five English sentences rated on a 7-point Likert scale, we normalize the ratings into fuzzy membership values and apply each operator to compute integrated acceptability scores. The results reveal that operator choice significantly influences final judgments, especially in cases where one linguistic dimension is strong and the other weak. While the minimum and product operators enforce strict conjunction, the mean and weighted average provide more flexible and interpretable assessments. These findings highlight aggregation as a critical design factor in fuzzy grammar models, with practical implications for educational NLP systems, grammar assessment tools, and context aware language technologies. Overall, this work contributes a methodological extension to fuzzy grammar modeling and offers guidance for tailoring aggregation strategies to specific linguistic and computational applications.

Keywords:

Fuzzy Grammar; Linguistic Acceptability; Fuzzy Logic; Graded Grammaticality; Natural Language Processing

References

[1] Arndt-Lappe, S., Filatkina, N., 2025. Dynamics at the Lexicon-Syntax Interface: Creativity and Routine in Word―Formation and Multi-Word Expressions, vol. 6. Walter de Gruyter GmbH & Co KG: Berlin, Germany.

[2] Gilbert, C., 2024. Referential Computations and Wh- Movement in Native and Non-native Processing of French: Evidence From Reading Times [Ph.D Thesis]. Indiana University: Bloomington, IN, USA.

[3] Häussler, J., Juzek, T.S., 2021. Exploring syntactic and semantic acceptability: A case study on semantic restriction violations and aspectual mismatches. Finnish Journal of Linguistics. 34, 39–76.

[4] Coopmans, C.W., Ligtenberg, K., Suijkerbuijk, M., et al., 2025. Comparing syntactic and discourse accounts of islands and parasitic gaps: experimental evidence from acceptability judgments. The Linguistic Review. 42(2), 139–187. DOI: https://doi.org/10.1515/tlr-2025-2005

[5] Deppermann, A., 2011. 15. Pragmatics and grammar. Foundations of Pragmatics. 1, 425.

[6] Li, Y., Kirchmeyer, A., Mehta, A., et al., 2024. Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines. arXiv preprint. arXiv: 2407.21046. DOI: https://doi.org/10.48550/arXiv.2407.21046

[7] Niu, J., Penn, G., 2020. Grammaticality and Language Modelling. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. Association for Computational Linguistics: Stroudsburg, PA, USA. pp. 110–119. DOI: https://doi.org/10.18653/v1/2020.eval4nlp-1.11

[8] Rosário, A.T., Dias, J.C., Ferreira, H., 2023. Bibliometric Analysis on the Application of Fuzzy Logic into Marketing Strategy. Businesses. 3(3), 402–423. DOI: https://doi.org/10.3390/businesses3030025

[9] Martínez, H.J.V., 2021. The acceptability delta criterion: Testing knowledge of language using the gradience of sentence acceptability. In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, Punta Cana, Dominican Republic; pp. 479–495. DOI: 10.18653/v1/2021.blackboxnlp-1.38

[10] Torrens-Urrutia, A., Jiménez-López, M.D., Campillo-Muñoz, S., 2023. Dealing with Evaluative Expressions and Hate Speech Metaphors with Fuzzy Property Grammar Systems. Axioms. 12(5), 484. DOI: https://doi.org/10.3390/axioms12050484

[11] Leivada, E., Westergaard, M., 2020. Acceptable Ungrammatical Sentences, Unacceptable Grammatical Sentences, and the Role of the Cognitive Parser. Frontiers in Psychology. 11, 364. DOI: https://doi.org/10.3389/fpsyg.2020.00364

[12] Zineddine, M., 2020. A novel trust model for fog computing using fuzzy neural networks and weighted weakest link. Information & Computer Security. 28(5), 763–800. DOI: https://doi.org/10.1108/ICS-04-2019-0046

[13] Leivada, E., 2020. Language Processing at Its Trickiest: Grammatical Illusions and Heuristics of Judgment. Languages. 5(3), 29. DOI: https://doi.org/10.3390/languages5030029

[14] Alghazzawi, D., Hayat, M., Alhamzi, G., et al., 2025. Innovative Dombi Aggregation Operators in Linguistic Intuitionistic Fuzzy Environments for Optimizing Telecommunication Networks. International Journal of Computational Intelligence Systems. 18(1), 128. DOI: https://doi.org/10.1007/s44196-025-00868-7

[15] Johnson-Grey, K.M., Boghrati, R., Wakslak, C.J., et al., 2020. Measuring Abstract Mind-Sets Through Syntax: Automating the Linguistic Category Model. Social Psychological and Personality Science. 11(2), 217–225. DOI: https://doi.org/10.1177/1948550619848004

[16] Adedokun, E.T., Adedokun, T.A., 2024. Avoidance of complex grammar by senior high school L2 English students: Motivations and cognition: Avoidance of complex grammar by senior high school. International Journal of Curriculum and Instruction, 16 (2). 287–307. Available from: https://ijci.net/index.php/IJCI/article/view/1469 (cited 12 July 2025).

[17] Suleiman Mohammad, Yogeesh N, Khaleel Ibrahim Al-Daoud, et al., 2025. A Mathematical Fuzzy Model for Syntax-Pragmatics Interface. Forum for Linguistic Studies. 7(6). DOI: https://doi.org/10.30564/fls.v7i6.9618

[18] Nefdt, R.M., 2021. Structural realism and generative linguistics. Synthese. 199(1–2), 3711–3737. DOI: https://doi.org/10.1007/s11229-020-02952-1

[19] Nefdt, R.M., 2020. Structural realism and generative grammar. Available from: https://philsci-archive.pitt.edu/18359/1/Structural_Realism_and_Linguistics%20Nefdt.pdf (cited 12 July 2025).

[20] Elshater, A., Abusaada, H., 2025. Applying Contextualism: From Urban Formation to Textual Representation. Societies. 15(4), 78. DOI: https://doi.org/10.3390/soc15040078

[21] Siregar, I., 2021. Epistemological Challenges Against Sociolinguistics. International Journal of Linguistics Studies. 1(2), 37–42. DOI: https://doi.org/10.32996/ijls.2021.1.2.6

[22] Yao, X., 2024. The Present Perfect and the Preterite in Late modern and Contemporary English: A Corpusbased Study of Grammatical Change. John Benjamins Publishing Company: Amsterdam, Netherlands.

[23] Kim, Z.M., Ramachandran, A., Tavazoee, F., et al., 2025. Align to Structure: Aligning Large Language Models with Structural Information. arXiv preprint. arXiv: 2504.03622. DOI: https://doi.org/10.48550/arXiv.2504.03622

[24] Nefdt, R.M., Baggio, G., 2024. Notational Variants and Cognition: The Case of Dependency Grammar. Erkenntnis. 89(7), 2867–2897. DOI: https://doi.org/10.1007/s10670-022-00657-0

[25] Moral, A., Castiello, C., Magdalena, L., et al., 2021. Explainable fuzzy systems. Springer: Berlin, Germany.

[26] Vashishtha, S., Gupta, V., Mittal, M., 2023. Sentiment analysis using fuzzy logic: A comprehensive literature review. WIREs Data Mining and Knowledge Discovery. 13(5), e1509. DOI: https://doi.org/10.1002/widm.1509

[27] Reyes-García, C.A., Torres-García, A.A., 2022. Fuzzy logic and fuzzy systems, in: Biosignal Processing and Classification Using Computational Learning and Intelligence. Elsevier. 153–176. DOI: https://doi.org/10.1016/B978-0-12-820125-1.00020-8

[28] Kroeger, P.R., 2023. Analyzing Meaning: An Introduction to Semantics and Pragmatics. Language Science Press: Berlin, Germany.

[29] İSkender, H., 2023. The Interplay of Polysemy and Prototypes: A Prototype Theory Approach to the Turkish Polysemic –lIk Morpheme. Karamanoğlu Mehmetbey Üniversitesi Edebiyat Fakültesi Dergisi. 56–76. DOI: https://doi.org/10.47948/efad.1362704

[30] Trott, S., Bergen, B., 2023. Word meaning is both categorical and continuous. Psychological Review. 130(5), 1239–1261. DOI: https://doi.org/10.1037/rev0000420

[31] Wang, B., 2025. A Hybrid Fuzzy Logic and Deep Learning Model for Corpus-Based German Language Learning with NLP. Informatica. 49(21). DOI: https://doi.org/10.31449/inf.v49i21.7423.

[32] Torrens-Urrutia, A., Jiménez-López, M.D., Brosa-Rodríguez, A., et al., 2022. A Fuzzy Grammar for Evaluating Universality and Complexity in Natural Language. Mathematics. 10(15), 2602. DOI: https://doi.org/10.3390/math10152602

[33] Wang, T., Gault, R., Greer, D., 2025. Data Informed Initialization of Fuzzy Membership Functions. International Journal of Fuzzy Systems. 1–12. DOI: https://doi.org/10.1007/s40815-024-01971-1

[34] Torrens-Urrutia, A., Novák, V., Jiménez-López, M.D., 2022. Describing Linguistic Vagueness of Evaluative Expressions Using Fuzzy Natural Logic and Linguistic Constraints. Mathematics. 10(15), 2760. DOI: https://doi.org/10.3390/math10152760

[35] Nasser, M.A., 2022. A corpus-based study of reviewers’ usage of speech acts. Cogent Arts & Humanities. 9(1), 2125155. DOI: https://doi.org/10.1080/23311983.2022.2125155

[36] Michaelis, L.A., 2024. Staying terminologically rigid, conceptually open and socially cohesive: How to make room for the next generation of construction grammarians. Constructions and Frames. 16(2), 278–310. DOI: https://doi.org/10.1075/cf.23012.mic

[37] Klavan, J., Blumenthal-Dramé, A., Veismann, A., 2025. Predicting native speaker choice: the role of corpus-based frequency metrics in morpho-syntactic alternations. Corpus Linguistics and Linguistic Theory. DOI: https://doi.org/10.1515/cllt-2023-0110

[38] Jennings, A., 2023. Surveillance by software: A code for employee monitoring [Doctoral dissertation]. University of Auckland: Auckland, New Zealand.

[39] Zhang, H., Hinzen, W., 2022. Grammar in ‘agrammatical’ aphasia: What’s intact? PLOS ONE. 17(12), e0278676. DOI: https://doi.org/10.1371/journal.pone.0278676

[40] Shitsukane, A.S., 2022. Fuzzy logic model for obstacles avoidance mobile robot in static unknown environment [Doctoral dissertation]. Jomo Kenyatta University of Agriculture and Technology: Nairobi, Kenya.

[41] Amoura, M., 2024.A method for detecting spam emails based on fuzzy logic [Master’s Thesis]. University of Guelma: Algeria, Guelma.

[42] Sredanović, B., Čiča, Đ., Kramar, D., 2021. 7 Soft computing in advanced cutting processes. In: Sibalija, T., Davim, J.P. (Eds.), Soft Computing in Smart Manufacturing. De Gruyter: Berlin, German. pp. 181–252. DOI: https://doi.org/10.1515/9783110693225-007

[43] Sommer, J., Musolino, J., Hemmer, P., 2024. Updating, evidence evaluation, and operator availability: A theoretical framework for understanding belief. Psychological Review. 131(2), 373–401. DOI: https://doi.org/10.1037/rev0000444

[44] Baggio, G., De Santo, A., Nuñez, N.A., 2024. Plausibility and Early Theory in Linguistics and Cognitive Science. Computational Brain & Behavior. 7(4), 535–547. DOI: https://doi.org/10.1007/s42113-024-00196-7

[45] Rustam, Gunawan, A.Y., Kresnowati, M.T.A.P., 2022. Data dimensionality reduction technique for clustering problem of metabolomics data. Heliyon. 8(6), e09715. DOI: https://doi.org/10.1016/j.heliyon.2022.e09715

[46] Rustam, Usman, K., Kamaruddin, M., et al., 2021. Modified possibilistic fuzzy c-means algorithm for clustering incomplete data sets. Acta Polytechnica. 61(2), 364–377. DOI: https://doi.org/10.14311/AP.2021.61.0364

[47] Rustam, R., Usman, K., 2025. A Novel Fuzzy Clustering Framework with Manhattan Distance and Weighted Median Centroids for Outlier-Resilient Data Analysis. DOI: https://doi.org/10.2139/ssrn.5318258

[48] Alahmadi, K., Alharbi, S., Chen, J., et al., 2025. Generalizing sentiment analysis: a review of progress, challenges, and emerging directions. Social Network Analysis and Mining. 15(1), 45. DOI: https://doi.org/10.1007/s13278-025-01461-8

[49] Peralta, A., Olivas, J.A., Navarro-Illana, P., et al., 2025. A Hybrid Mathematical Framework for Dynamic Incident Prioritization Using Fuzzy Q-Learning and Text Analytics. Mathematics. 13(12), 1941. DOI: https://doi.org/10.3390/math13121941

[50] Gandhi, A., Adhvaryu, K., Poria, S., et al., 2023. Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion. 91, 424–444. DOI: https://doi.org/10.1016/j.inffus.2022.09.025

[51] Ramesh, D., Sanampudi, S.K., 2022. An automated essay scoring systems: a systematic literature review. Artificial Intelligence Review. 55(3), 2495–2527. DOI: https://doi.org/10.1007/s10462-021-10068-2

[52] Faraz, A., Ahsan, F., Mounsef, J., et al., 2024. Enhancing Child Safety in Online Gaming: The Development and Application of Protectbot, an AI-Powered Chatbot Framework. Information. 15(4), 233. DOI: https://doi.org/10.3390/info15040233

[53] Katzir, N., Cummins, C., 2025. From semantic structure to conventionalization: Exploring scalar diversity in quantifier scales. International Review of Pragmatics. 17(1), 122–152. DOI: https://doi.org/10.1163/18773109-01701005

[54] Muralidaran, V., 2022. Automatic grammar induction from free text using insights from cognitive grammar [Doctoral dissertation]. Cardiff University: Cardiff, UK.

Downloads

How to Cite

Rustam. (2025). A Comparative Study of Fuzzy Aggregation Strategies in Modeling the Syntax Pragmatics Interface. Forum for Linguistic Studies, 7(10), 1254–1267. https://doi.org/10.30564/fls.v7i10.11031

Issue

Article Type

Article