Shedding Light on the Neurocognitive Explorations of Interpreting: What Do We Know from Brain-Based Research?

Authors

  • Yan He

    College of Foreign Languages and Literature, Fudan University, Shanghai 200433, China

  • Yi Wang

    School of General Education, Tianjin Foreign Studies University, Tianjin 300204, China

DOI:

https://doi.org/10.30564/fls.v6i5.7013
Received: 7 August 2024 | Revised: 21 August 2024 | Accepted: 22 August 2024 | Published Online: 14 November 2024

Abstract

Interpreting is highly complex and cognitively demanding, arousing interest from the neuroimaging community. In the past three decades, dozens of investigations have been done to figure out how one language transfers into another in the brain. This article reviews the published studies concerning interpreting, shedding light on interpreting asymmetry effect, the neural plasticity and the brain regions activated during interpreting tasks. Based on the findings in previous studies, the article argues that interpreting training and practice might contribute to neuroplasticity both functionally and structurally. It also suggests that apart from traditional language areas, the prefrontal cortex, the superior temporal gyrus, the inferior parietal lobule and the anterior cingulate cortex also play a key role during the rendering process.

Keywords:

Neurocognition; Neuroplasticity; Interpreting; Review

References

[1] García, A.M., 2015. Translating with an injured brain: Neurolinguistic aspects of translation as revealed by bilinguals with cerebral lesions. Meta: Translators’ Journal. 60(1), 112–134. DOI: https://doi.org/10.7202/1032402ar

[2] He, Y., Hu, Y., Yang, Y., et al., 2021. Optical mapping of brain activity underlying directionality and its modulation by expertise in Mandarin/English interpreting. Frontiers in Human Neuroscience. 15, 649578. DOI: https://doi.org/10.3389/fnhum.2021.649578

[3] Kurz, I., 1995. Watching the brain at work—An exploratory study of EEG changes during simultaneous interpreting (SI). The Interpreters’ Newsletter. 6, 3–16.

[4] Klein, D., Milner, B., Zatorre, R.J., et al., 1995. The neural substrates underlying word generation: a bilingual functional-imaging study. Proceedings of the National Academy of Sciences. 92(7), 2899–2903. DOI: https://doi.org/10.1073/pnas.92.7.2899

[5] Price, C.J., Green, D.W., Von Studnitz, R., 1999. A functional imaging study of translation and language switching. Brain. 122(12), 2221–2235. DOI: https://doi.org/10.1093/brain/122.12.2221

[6] García, A.M., Mikulan, E., Ibáñez, A., 2016. A neuroscientific toolkit for translation studies. In: Martin, R.M. (ed.). Reembedding Translation Processing Research. John Benjamins Publishing Company: Amsterdam, The Netherlands. pp. 21–46.

[7] Elmer, S., Kühnis, J., 2016. Functional connectivity in the left dorsal stream facilitates simultaneous language translation: An EEG study. Frontiers in Human Neuroscience. 10, 60. DOI: https://doi.org/10.3389/fnhum.2016.00060

[8] Zheng, B.H., Báez, S., Su, L., et al., 2020. Semantic and attentional networks in bilingual processing: fMRI connectivity signatures of translation directionality. Brain and Cognition. 143, 105584. DOI: https://doi.org/10.1016/j.bandc.2020.105584

[9] He, Y., Hu, Y., 2022. Functional Connectivity Signatures Underlying Simultaneous Language Translation in Interpreters and Non-Interpreters of Mandarin and English: An fNIRS Study. Brain Sciences. 12(2), 273. DOI: https://doi.org/10.3390/brainsci12020273

[10] Rinne, J.O., Tommola, J., Laine, M., et al., 2000. The translating brain: cerebral activation patterns during simultaneous interpreting. Neuroscience Letters. 294(2), 85–88. DOI: https://doi.org/10.1016/s0304-3940(00)01540-8

[11] Quaresima, V., Ferrari, M., van der Sluijs, M.C., et al., 2002. Lateral frontal cortex oxygenation changes during translation and language switching revealed by non-invasive near-infrared multi-point measurements. Brain Research Bulletin. 59(3), 235–243. DOI: https://doi.org/10.1016/S0361-9230(02)00871-7

[12] Christoffels, I.K., Ganushchak, L., Koester, D., 2013. Language conflict in translation: An ERP study of translation production. Journal of Cognitive Psychology. 25(5), 646–664. DOI: https://doi.org/10.1080/20445911.2013.821127

[13] He, Y., Wang, M.Y., Li, D., Yuan, Z., 2017. Optical mapping of brain activation during the English to Chinese and Chinese to English sight translation. Biomedical Optics Express. 8(12), 5399–5411. DOI: https://doi.org/10.1364/BOE.8.005399

[14] Shinozuka, K., Niioka, K., Tokuda, T., et al., 2021. Language familiarity and proficiency leads to differential cortical processing during translation between distantly related languages. Frontiers in Human Neuroscience. 15, 593108. DOI: https://doi.org/10.3389/fnhum.2021.593108

[15] Hervais-Adelman, A.G., Moser-Mercer, B., Golestani, N., 2011. Executive control of language in the bilingual brain: integrating the evidence from neuroimaging to neuropsychology. Frontiers in Psychology. 2, 234. DOI: https://doi.org/10.3389/fpsyg.2011.00234

[16] Hervais-Adelman, A.G., Moser-Mercer, B., Michel, C.M., et al., 2014. fMRI of simultaneous interpretation reveals the neural basis of extreme language control. Cerebral Cortex. 25(12), 4727–4739. DOI: https://doi.org/10.1093/cercor/bhu158

[17] Hervais-Adelman, A., Moser-Mercer, B., Golestani, N., 2015. Brain functional plasticity associated with the emergence of expertise in extreme language control. NeuroImage. 114, 264–274. DOI: https://doi.org/10.1016/j.neuroimage.2015.03.072

[18] Becker, M., Schubert, T., Strobach, T., et al., 2016. Simultaneous interpreters vs. professional multilingual controls: Group differences in cognitive control as well as brain structure and function. NeuroImage. 134, 250–260. DOI: https://doi.org/10.1016/j.neuroimage.2016.03.079

[19] Ahrens, B., Kalderon, E., Krick, C.M., et al., 2010. fMRI for exploring simultaneous interpreting. In: Gile, D., Hansen, G., Pokorn, N. K. (eds.). Why Translation Studies Matter. John Benjamins Publishing Company: Amsterdam, The Netherlands. pp. 237–248.

[20] Elmer, S, Hänggi, J, Jäncke, L., 2014. Processing demands upon cognitive, linguistic, and articulatory functions promote gray matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex. 54, 179–189. DOI: https://doi.org/10.1016/j.cortex.2014.02.014

[21] Ren, H., Wang, M.Y., He, Y., et al., 2019. A novel phase analysis method for examining fNIRS neuroimaging data associated with Chinese/English sight translation. Behavioural Brain Research. 361, 151–158. DOI: https://doi.org/10.1016/j.bbr.2018.12.032

[22] Lin, X., Lei, V.L., Li, D., et al., 2018. Mapping the small-world properties of brain networks in Chinese to English simultaneous interpreting by using functional near-infrared spectroscopy. Journal of Innovative Optical Health Sciences. 11(3), 1840001. DOI: https://doi.org/10.1142/S1793545818400011

[23] Lin, X., Lei, V.L., Li, D., et al., 2018. Which is more costly in Chinese to English simultaneous interpreting, “pairing” or “transphrasing”? Evidence from an fNIRS neuroimaging study. Neurophotonics. 5(2), 025010. DOI: https://doi.org/10.1117/1.NPh.5.2.025010

[24] Schecklmann, M., Ehlis, A.C., Plichta, M.M., et al., 2008. Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency. NeuroImage. 43(1), 147–155. DOI: https://doi.org/10.1016/j.neuroimage.2008.06.032

[25] Huppert, T.J., Hoge, R.D., Diamond, S.G., et al., 2006. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 29(2), 368–382. DOI: https://doi.org/10.1016/j.neuroimage.2005.08.065

[26] Tricco, A.C., Lillie, E., Zarin, W., et al., 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine. 169(7), 467–473. DOI: https://doi.org/10.7326/M18-0850

[27] Van de Putte, E., De Baene, W., García-Pentón, L., et al., 2018. Anatomical and functional changes in the brain after simultaneous interpreting training: A longitudinal study. Cortex. 99, 243–257. DOI: https://doi.org/10.1016/j.cortex.2017.11.024

[28] Janyan, A., Popivanov, I., Andonova, E., 2009. Concreteness effect and word cognate status: ERPs in single word translation. In: Alter, K., Horne, M., Lindgren, M., et al., (eds.). Brain Talk: Discourse with and in the Brain. Lunds Universitet: Lunds, Sweden. pp. 21–30.

[29] Jost, L.B., Radman, N., Buetler, K.A., et al., 2018. Behavioral and electrophysiological signatures of word translation processes. Neuropsychologia. 109, 245–254. DOI: https://doi.org/10.1016/j.neuropsychologia.2017.12.034

[30] Proverbio, A.M., Leoni, G., Zani, A., 2004. Language switching mechanisms in simultaneous interpreters: an ERP study. Neuropsychologia. 42(12), 1636–1656. DOI: https://doi.org/10.1016/j.neuropsychologia.2004.04.013

[31] Proverbio, A.M., Adorni, R., 2011. Hemispheric asymmetry for language processing and lateral preference in simultaneous interpreters. Psychology. 2(1), 12. DOI: https://doi.org/10.4236/psych.2011.21002

[32] Grabner, R.H., Brunner, C., Leeb, R., et al., 2007. Event-related EEG theta and alpha band oscillatory responses during language translation. Brain Research Bulletin. 72(1), 57–65. DOI: https://doi.org/10.1016/j.brainresbull.2007.01.001

[33] Hervais-Adelman, A.G., Moser-Mercer, B., Murray, M.M., et al., 2017. Cortical thickness increases after simultaneous interpretation training. Neuropsychologia. 98, 212–219.

[34] Babcock, L.E., 2015. Does simultaneous interpretation training lead to more brain or better brain? [PhD Dissertation]. Trieste, Italy: Scuola Internazionale Superiore di Studi Avanzati. pp. 81–110.

[35] Lehtonen, M.H., Laine, M., Niemi, J., et al., 2005. Brain correlates of sentence translation in Finnish–Norwegian bilinguals. NeuroReport. 16(6), 607–610. DOI: https://doi.org/10.1097/00001756-200504250-00018

[36] Borius, P.Y., Giussani, C., Draper, L., et al., 2012. Sentence translation in proficient bilinguals: A direct electrostimulation brain mapping. Cortex. 48(5), 614–622. DOI: https://doi.org/10.1016/j.cortex.2011.01.011

[37] Klein, C., Metz, S.I., Elmer, S., et al., 2018. The interpreter's brain during rest—Hyperconnectivity in the frontal lobe. PloS one. 13(8), e0202600.

[38] Dottori, M., Hesse, E., Santilli, M., et al., 2020. Task-specific signatures in the expert brain: Differential correlates of translation and reading in professional interpreters. NeuroImage. 209, 116519. DOI: https://doi.org/10.1016/j.neuroimage.2020.116519

[39] Boos, M., Kobi, M., Elmer, S., et al., 2022. The influence of experience on cognitive load during simultaneous interpretation. Brain and Language. 234, 105185.

[40] García, A.M., 2014. The interpreter advantage hypothesis: Preliminary data patterns and empirically motivated questions. Translation and Interpreting Studies. 9(2), 219–238.

[41] Bajo, M.T., Padilla, F., Padilla, P., 2000. Comprehension processes in simultaneous interpreting. In: Chesterman, A., Gallardo San Salvador, N., Gambier, Y., (eds.). Translation in Context. John Benjamins: Amsterdam/Philadelphia, The Netherlands. pp. 127–142.

[42] Yudes, C., Macizo, P., Bajo, M.T., 2011. The influence of expertise in simultaneous interpreting on non-verbal executive processes. Frontiers in Psychology. 2, 309.

[43] Mayer, K.M., Yildiz, I.B., Macedonia, M., et al., 2015. Visual and motor cortices differentially support the translation of foreign language words. Current Biology. 25(4), 530–535. DOI: https://doi.org/10.1016/j.cub.2014.11.068

[44] Jasińska, K.K., Petitto, L.A., 2014. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging. Developmental Neuropsychology. 39(6), 421–439.

[45] Mücke, M., Andrä, C., Gerber, M., et al., 2018. Moderate-to-vigorous physical activity, executive functions and prefrontal brain oxygenation in children: a functional near-infrared spectroscopy study. Journal of Sports Sciences. 36, 630–636.

[46] Pardo, J.V., Pardo, P.J., Janer, K.W., et al., 1990. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America. 87(1), 256–259. DOI: https://doi.org/10.1073/pnas.87.1.256

[47] Bush, G., Luu, P., Posner, M.I., 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences. 4(6), 215–222. DOI: https://doi.org/10.1016/s1364-6613(00)01483-2

[48] Bush, G., Vogt, B.A., Holmes, J., et al., 2002. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Sciences of the United States of America. 99(1), 523–528. DOI: https://doi.org/10.1073/pnas.012470999

[49] Hartwigsen, G., Baumgaertner, A., Price, C.J., et al., 2010. Phonological decisions require both the left and right supramarginal gyri. Proceedings of the National Academy of Sciences of the United States of America. 107(38), 16494–16499.

[50] Brownsett, S.L.E., Wise, R.J.S., 2010. The contribution of the parietal lobes to speaking and writing. Cerebral Cortex. 20(3), 517–523.

[51] Park, H.J., Kim, J.J., Lee, S.K., et al., 2008. Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Human Brain Mapping. 29(5), 503–516.

[52] Seghier, M.L., 2012. The angular gyrus: multiple function ad multiple subdivisions. Neuroscientist. 19, 43–61.

[53] Jäncke, L., Mirzazade, S., Shah, N.J., 1999. Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects. Neuroscience Letters. 266(2), 125–128.

[54] Grady, C.L., Van Meter, J.W., Maisog, J.M., et al., 1997. Attention-related modulation of activity in primary and secondary auditory cortex. NeuroReport. 8(11), 2511–2516.

[55] Liu, H., Cao, F., 2016. L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain Lang. 159, 60–73.

[56] Tan, L.H., Laird, A.R., Li, K., et al., 2005. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: A meta‐analysis. Human Brain Mapping. 25(1), 83–91. DOI: https://doi.org/10.1002/hbm.20134

[57] Blanco-Elorrieta, E., Emmorey, K., Pylkkänen, L., 2018. Language switching decomposed through MEG and evidence from bimodal bilinguals. Proceedings of the National Academy of Sciences. 115(39), 9708–9713. DOI: https://doi.org/10.1073/pnas.1809779115

Downloads

How to Cite

He, Y., & Wang, Y. (2024). Shedding Light on the Neurocognitive Explorations of Interpreting: What Do We Know from Brain-Based Research?. Forum for Linguistic Studies, 6(5), 588–599. https://doi.org/10.30564/fls.v6i5.7013