Source Area Weathering and Tectonic History Inferred from the Geochemistry of the Maastrichtian Sandstone from Patti Formation, Southern Bida Basin, North Central Nigeria

Authors

  • R. G. Oladimeji Department of Geological Sciences, Osun State University, Osogbo, Osun State, Nigeria
  • O. J. Ojo Department of Geology, Federal University, Oye Ekiti State, Nigeria

DOI:

https://doi.org/10.30564/agger.v4i3.4933

Abstract

Sandstones sampled from Patti Formation, Southern Bida Basin, were studied geochemically using Inductively Coupled Plasma Atomic Emission Spectrophotometer (ICP-AES) and an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) technique to evaluate their weathering and tectonic setting as well as to deduce the paleo-climatic conditions that existed during their deposition. Geochemically, SiO2 range from 73.9% to 86.2%, Al2O3 (6.7%~17.1%), Fe2O3 (1.1%~1.9%), K2O (0.1%~0.7%) while MgO, CaO, Na2O, P2O5, MnO and TiO2 were <1%. Enriched in Ba (Av. 622.94), Sr (Av. 153.63), Rb (Av. 55.08) and Zr (Av. 51.86) relatively similar in composition to UCC. High SiO2 but low other major oxides signify high mobility during processes of weathering. This was confirmed by high value (>80%) for indices like chemical index of alteration, chemical index of weathering, plagioclase index of alteration, mineralogical index of alteration and relatively lower values for weathering index of parker, recently used alpha indices (αAl E) of sodium (326.17αΑl Na<344.40), magnesium (100.54αΑl mg<398.55), calcium (12.07αΑl Ca<198.99), potassium (4.43αΑl K<64.33), strontium (0.84αΑl E<21.40), barium (0.45 αΑl Ba<10.52) and rubidium (0.0008αΑl Rb<0.06), supported by AI2O3-(CaO*+Na2O)-K2O and CIA vs. SiO2 plots that imply intense weathering in the source area. The obtained high CIA values (>80) indicates a steady-state of weathering under a warm/humid climate as confirmed by the SiO2 vs. Al2O3+ K2O + Na2O plot. High average SiO2 (75.41wt%) with K2O/Na2O ratio >1 (15.63), low Fe2O3 (1.27wt %), Al2O3 (15.82wt%) and TiO2 (0.46) suggest passive margin tectonic setting. This is supported by enriched ΣREE (209.64 ppm), ΣLREE (195.78), LREE/HREE (27.78) and negative Eu/Eu* (0.68), plots of log (K2O/Na2O) vs. SiO2 and SiO2/Al2O3 vs. K2O/Na2O. Major elements discriminant-function multi-dimensional diagram, DF1 (arcrift-col) vs. DF2 (arc-rift-col), for high-silica sediments revealed a continental rift tectonic setting. Thus, the Patti Formation sandstone underwent a high degree of weathering under a humid climatic condition within a continental rift tectonic setting.

Keywords:

Patti formation sandstone; Chemical weathering; Passive margin; Continental drift; Climatic condition

References

[1] Kogbe, C.A., Ajakaiye, D.E., Matheis, G., 1983. Confirmation of Rift Structure along the Mid-Niger Valley, Nigeria. Journal of African Earth Sciences. 1, 127-131. DOI: https://doi.org/10.1016/0899-5362(83)90004-0

[2] Udensi, E.E., Osazuwa, I.B., 2004. Spectra Determination of Depths to Magnetic Rocks under the Nupe Basin, Nigeria, 17. National Association of Petroleum Explorationist Bulletin. pp. 22-37.

[3] Odundun, O.A., Ogundoro, O.J., 2019. Origin And Sandstone Classification of the Upper Cretaceous Lokoja sandstone in Southern Bida Basin, as determined from geochemical data. Global Journal of Geological Sciences. 17, 1-11. DOI: https://doi.org/10.4314/gjgs.v17i1.1

[4] Braide S.P., 1992. Geological development, origin and energy mineral resource potential of the Lokoja Formation in the Southern Bida Basin. Journal of Mining and Geology. 28, 33-44.

[5] Ojo, O.J., Akande, S.O., 2008. Microfloral assemblage, age and palaeovironment of the Upper Cretaceous Patti Formation, southeastern Bida Basin, Nigeria. Journal of Mining and Geology. 44, 71-81. DOI: https://doi.org/10.4314/jmg.v44i1.18885

[6] Obaje, N.G., Wehner, H., Scheeder, G., 2004. Hydrocarbon prospectivity of Nigeria’s inland basins from the viewpoint of organic geochemistry and organic petrology. American Association of Petroleum Geologists Bulletin. 88, 325-353.

[7] Jones, H.A., 1958. The Oolitic Ironstone of Agbaja Plateau, Kabba Province. Record of the Geological survey of Nigeria. 20-43.

[8] Ojo, O.J., Akande, S.O., 2013. Petrographic facies, provenance and paleo environments of the Lokoja Formation, Bida Basin, Nigeria. Journal of Mine Geology. 49, 93-110.

[9] Falconer, J.D., 1911. The Geology and Geography of Northern Nigeria. Macmillian, London pp. 255.

[10] Adeleye, D.R., 1989. The Geology of the Mid-Niger Basin. Kogbe, C. A. (Ed.), Geology of Nigeria, 2nd ed. Elizabethan Publishing Co., Lagos. pp. 283-287.

[11] Jan du Chene, R.E., Adegoke, O.S., Adediran, S.A., et al., 1978. Palynology and foraminifera of the Lokoja Sandstone (Maastrichtian), Bida Basin, Nigeria. Revista Espanola de Micropaleontotologia. 10, 379-393.

[12] Agyingi, C.M., 1991. Geology of Upper Cretaceous rocks in the eastern Bida, Nigeria. Unpublished Ph.D. Thesis. Department of Geology, University of Ibadan.

[13] Ladipo, K.O., Akande, S.O., Mucke, A., 1994. Genesis of ironstones from middle Niger sedimentary basin, evidence from sedimentological, ore microscope and geochemical studies. Journal of Mining and Geology. 30, 161-168.

[14] Abimbola, A.F., 1997. Petrographic and paragenetic studies of the Agbaja Ironstone Formation, Nupe Basin, Nigeria. Journal of African Earth Sciences. 25, 169-181. DOI: https://doi.org/10.1016/S0899-5362(97)00096-1

[15] Akande, S.O., Ojo, O.J., Erdtmann, B.D., et al., 2005. Paleoenvironments, organic petrology and Rock-Eval studies on source rock facies of the Lower Maastrichtian Patti Formation, southern Bida Basin, Nigeria. Journal of African Earth Sciences. 41, 394-406. DOI: https://doi.org/10.1016/j.jafrearsci.2005.07.006

[16] Nton, M.E., Adamolekun, O.J., 2016. Sedimentological and geochemical characteristics of outcrop sediments of Southern Bida Basin, Central Nigeria: Implications for provenance, paleoenvironment and tectonic history. Ife Journal of Science. 18(2), 345-369.

[17] Ojo, O.J., Adepoju, S.A., Awe, Adeoye, M.O., 2021. Mineralogy and geochemistry of the sandstone facies of Campanian Lokoja formation in the Southern Bida basin, Nigeria: implications for provenance and weathering history. Heliyon. 7, 1-12. DOI: https://doi.org/10.1016/j.heliyon.2021.e08564

[18] Ojo, O.J., Akande, S.O., 2003. Facies relationships and depositional environments of the Upper Cretaceous Lokoja Formation in the Bida Basin, Nigeria. Journal of Mining and Geology. 39, 39-48.DOI: https://doi.org/10.4314/jmg.v39i1.18789

[19] Ojo, O.J., Akande, S.O., 2009. Sedimentology and depositional environments of the Maastrichtian Patti Formation, southern Bida Basin, Nigeria. Cretaceous Research. 30, 1415-1425.

[20] Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology. 91, 611-627.

[21] McLennan, S.M., Hemming, S., McDaniel, D.K., et al., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Processes controlling the composition of clastic sediments. Johnson, M.J and Basu, A. (Eds). Geological Society of America Special Paper. 284, 21-40.

[22] Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., et al., 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, Southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research. 74(2), 285-297. DOI: https://doi.org/10.1306/082803740285

[23] Dey, S., Rai, A.K., Chaki, A., 2009. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi–Badami basin, Karnataka, southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Sciences. 34, 703-715. DOI: https://doi.org/10.1016/j.jseaes.2008.10.003

[24] Maharana, C., Srivastava, D., Tripathi, J.K., 2018. Geochemistry of sediments of the Peninsular Rivers of the Ganga basin and its implication to weathering, sedimentary processes, and provenance. Chemical Geology. 483, 1-20. DOI: https://doi.org/10.1016/j.chemgeo.2018.02.019

[25] Tang, S.D.N., Atangana, J.N., Onana,V.L., 2020. Mineralogy and geochemistry of alluvial sediments from the Kadey plain, eastern Cameroon: Implications for provenance, weathering, and tectonic. setting. Journal of African Earth Sciences. 163, 103763. DOI: https://doi.org/10.1016/j.jafrearsci.2020.103763

[26] Ayala-Perez, M.P., Armstrong-Altrin, J.S., Machin-Castillo, M.L., 2021. Heavy metal contamination and provenance of sediments recovered at the Grijalva River delta, southern Gulf of Mexico. Journal of Earth System Science. 130(880).

[27] Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology. 94, 635-650.

[28] Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of sandstones. Zuffa, G.G. (Ed.), Provenance of Arenites. NATO-ASI Series, 148. Reidel Publishing Company, Dordrecht. pp. 333-361.

[29] Osae, S., Asiedu, D.K., Banoeng-Yakubo, B., et al., 2006. Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana:evidence from geochemistry and detrital modes. Journal of African Earth Sciences. 44, 85-96.

[30] Dinis, P.A., Garzanti, E., Hahn, A. et al., 2019. Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth Science Reviews. DOI: https://doi.org/10.1016/j.earscirev.2019.103039

[31] Guo, Y., Yang, S., Su, N., et al., 2018. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta. 227, 48-68.DOI: https://doi.org/10.1016/j.gca.2018.02.015

[32] Viers, J., Dupré, B., Gaillardet, J., 2009. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the total Environment. 407, 853-865.DOI: https://doi.org/10.1016/j.scitotenv.2008.09.053

[33] Braide, S.P., 1992. Syntectonic fluvial sedimentation in the central Bida Basin. Journal of Mining and Geology. 28, 55-64.

[34] Petters, S.W., 1986. Depositional environments and daigenesis of Albian carbonates on the Calabar Flank, Southeastern Nigeria. Journal of Petroleum Geology. 10(3), 283-294.

[35] Ojo, O.J., Akande, S.O., 2006. Microfloral biostratigraphy, paleoecology and paleoclimate of the Upper Cretaceous Patti Formation, southeastern Bida Basin.NAPE conference Proceedings. pp. 69-73.

[36] Anaya-Gregorio, A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., et al., 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern, Gulf of Mexico. Journal of Palaeogeography. 7(3), 253-271.

[37] Ramos-Vazquez, M.A., Armstrong-Altrin, J.S., 2020. Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology. 110, 650-675. DOI: https://doi.org/10.1016/j.marpetgeo.2019.07.032

[38] Akpokodje, E.G., Etu-Efeotor, J.O., Olurunfemi, B.N., 1991. The Composition and physical properties of some ceramic and pottery clays of South- eastern, Nigeria. Journal Mining and Geology. 27(1), 4-7.

[39] Zaid, S.M., 2017. Provenance of coastal dune sands along Red Sea, Egypt. Journal of Earth System Science. 126(4), 1-20.

[40] Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy & Petrology. 92, 181-193. DOI: https://doi.org/10.1007/BF00375292

[41] Crichton, J.G., Condie, K.C., 1993. Trace elements as source indicators in cratonic sediments: a case of study from the early Proterozoic Libby Creek Group, southwestern Wyoming. Journal of Geology. 101, 319-322.

[42] Dabard, M.P., 1990. Lower Brioverian Formation (Upper Proterozoic) of the American Massif (France): Geodynamic evolution of source areas revealed by sandstone petrography and geochemistry. Sedimentary Geology. 69, 45-48.

[43] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications. pp. 312.

[44] Boynton, W.V., 1984. Geochemistry of the rare earth elements: meteorite studies. Henderson, P. (ed), Rare Earth Element Geochemistry, Elsevier. 63-114.

[45] Herron, M.M., 1988. Geochemical classifi cation of terrigenous sands and shales from core or log data. Journal of Sedimentary Research. 58, 820-829. DOI: https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

[46] Pettijohn, F.G., Potter, P.D., Siever, R., 1972. Sand and Sandstone. Springer, New York. pp. 618.

[47] Lindsey, D.A., Tysdal, R.G., Taggart, J.E.Jr., 2003. Chemical composition and provenance of the Mesoproterozoic Big Creek, Apple Creek, and Gunsight Formations, Lemhi Group, Central Idaho. Russell G, Tysdal RG, Lindsey DA, Taggart JE Jr, editors. Correlation, Sedimentology, Structural Setting, Chemical Composition, and Provenance of Selected Formations in Mesoproterozoic Lemhi Group, Central Idaho. Washington, DC, USA: USGS Professional Paper 1668-B.

[48] Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature. 299, 715-717.

[49] Li, C., Yang, S.Y., 2010. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? American Journal of Science. 310, 111-127. DOI: https://doi.org/10.2475/02.2010.03

[50] Roy, D.K., Roser, B.P., 2013. Climatic control on the composition of Carboniferous–Permian Gondwana sediments, Khalaspir basin, Bangladesh. Gondwana Research. 2, 1163-1171. DOI: https://doi.org/10.1016/j.gr.2012.07.006

[51] Yang, J., Du, Y., Cawood, P.A., et al., 2012. Modal and geochemical compositions of the lower Silurian clastic rocks in north Qilian, NW China: Implications for provenance, chemical weathering, and tectonic setting. Journal of Sedimentary Research. 82, 92-103. DOI: https://doi.org/10.2110/jsr.2012.6

[52] Dinis, P., Garzanti, E., Vermeesch, P., et al., 2017. Climatic zonation and weathering control on sediment composition (Angola). Chemical Geology. 467, 110-121. DOI: https://doi.org/10.1016/j.chemgeo.2017.07.030

[53] Bal Akkoca, D., Eriş, K.K., Çağatay, M.N., et al., 2019. The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting. Turkish Journal of Earth Sciences. 28, 760-785. DOI: https://doi.org/10.3906/yer-1812-8

[54] Overare, B., Osokpor, J., 2020. Providing Clues on the Paleo-weathering of Ogwashi Asaba Formation, Niger Delta Basin: Evidence from Geochemistry. Tropical Journal of Science and Technology. 1(1), 74-92.

[55] Bolarinwa, A.T., Idakwo, S.O., Bish, D.L., 2021. Source area-weathering, provenance and tectonic setting of the campanian- Maastrichtian clay sequences in the Lower Benue Trough of Nigeria. Journal of African Earth Sciences. 173, 104050. DOI: https://doi.org/10.1016/j.jafrearsci.2020.104050

[56] Condie, K.C., Boryta, M.D., Liu, J., et al., 1992. The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton: Precambrian Research. 59(3-4), 207-223.

[57] Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering geochemistry and Sr-Nd figerprints of equatorial upper Nile and Congo muds. Geochemistry Geophysics Geosystems. 14, 292-316. DOI: https://doi.org/10.1002/ggge.20060

[58] Roy, P.D., Caballeroa, M., Lozanoc, R., et al., 2008. Geochemistry of Late quaternry sediments from Tecomulco Lake, central Mexico: Implication to chemical weathering and provenance. Chemie Der Erde Geochemistry. 68, 383-393.

[59] Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochimica et Cosmochimica Acta. 48, 1523-1534.

[60] Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology. 23, 921-924. DOI: https://doi.org/10.1130/0091-7613(1995)023%3C0921:UTEOPM%3E2.3.CO;2

[61] Suttner, L.J., Prodip, K.D., 1986. Alluvial sandstone composition and paleoclimate; Framework mineralogy. Journal of Sedimentary Research. 56(3), 329-345. DOI: https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D

[62] Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source area weathering and provenance. Geochimica et Cosmochimica Acta. 51, 2401-2416. DOI: https://doi.org/10.1016/0016-7037(87)90293-6

[63] Tang, Y., Sang, L., Yuan, Y., et al., 2012. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: implications for source weathering, provenance and tectonic setting. Geoscience Frontiers. 3(5), 647-660. DOI: https://doi.org/10.1016/j.gsf.2012.01.006

[64] Mourabet, M., Barakat, A., Zaghloul, M.N., et al., 2018. Geochemistry of the Miocene Zoumi flysch thrust-top basin (External Rif, Morocco): new constraints on source area weathering, recycling processes, and paleoclimate conditions. Arabian Journal of Geosciences. 11(6), 18-26. DOI: https://doi.org/10.1007/s12517-018-3465-y

[65] McLennan, S.M., Taylor, S.R., McCulloch, M.T., et al., 1990. Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta. 54, 2015-2050. DOI: https://doi.org/10.1016/0016-7037(90)90269-Q

[66] Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., et al., 2015. Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research. 95, 15-26. DOI: https://doi.org/10.1016/j.csr.2015.01.003

[67] McLennan, S.M., Taylor, S.R., 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology. 99, 1-21.

[68] LaMaskin, T.A., Dorsey, R., Vervoort, J.D., 2008. Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, USA: implications for Cordilleran tectonics. Journal of Sedimentary Research. 78(12), 765-783. DOI: https://doi.org/10.2110/jsr.2008.087

[69] Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology. 355, 117-180. DOI: https://doi.org/10.1016/j.chemgeo.2013.07.014

[70] Armstrong-Altrin, J.S., Botello, A.V., Villanueva, S.F., et al., 2019. Geochemistry of surface sediments from the north western Gulf of Mexico: implications for provenance and heavy metal contamination. Geological Quarterly. 63(3), 522-538. DOI: https://doi.org/10.7306/gq.1484

[71] Obaje, N.G., Balogun, D.O., Idris-Nda, A., et al., 2013. Preliminary integrated hydrocarbon prospectivity evaluation of the Bida Basin in North Central Nigeria. Petroleum Technology Development Journal. 3(2), 36-65.

Downloads

How to Cite

Oladimeji, R. G., & Ojo, O. J. (2022). Source Area Weathering and Tectonic History Inferred from the Geochemistry of the Maastrichtian Sandstone from Patti Formation, Southern Bida Basin, North Central Nigeria. Advances in Geological and Geotechnical Engineering Research, 4(3), 32–48. https://doi.org/10.30564/agger.v4i3.4933

Issue

Article Type

Article