Geochemical Characterization and Petrogenetic Implication of Recent Mafic Magmatism from Foumbot-Koutaba (West-Cameroon) and Their Potential as Sustainable Natural Resources

Authors

  • Aziz Mahomed Mounjouohou

    Department of Minerals Engineering, Chemical Engineering and Mineral Industries School, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon

  • Benjamin Ntieche

    Higher Teacher Training College, Geology Laboratory, University of Yaoundé I, Yaoundé P.O. Box 47, Cameroon

  • Mama Ntoumbé

    School of Geology and Mining Engineering, University of Ngaoundéré, Ngaoundéré P.O. Box 115, Cameroon

  • Abdou Azizi Youpoungam

    Department of Minerals Engineering, Chemical Engineering and Mineral Industries School, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon

  • Daouda Dawai

    Department of Earth Sciences, University of Maroua, Maroua P.O. Box 46, Cameroon

  • Amidou Moundi

    Department of Earth Sciences, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon

DOI:

https://doi.org/10.30564/agger.v7i1.8268
Received: 21 October 2024 | Revised: 10 January 2025 | Accepted: 15 January 2025 | Published Online: 21 January 2025

Abstract

The Foumbot-Koutaba area which is part of the Noun plain, a component of Cameroon Volcanic Line (Central Africa) has experienced recent magmatism from 65 Ma up to date. Field and petrographic studies show that the recent mafic magmatic rocks of the area consist of basalts, dolerites and huge pyroclastics deposits. The rocks present doleritic (dolerites), porphyritic microlitics, aphyric (basalts) and vesicular (pyroclastics) textures. Geochemical studies show that the mafic rocks studied have high contents of FeOt (08.22–12.55% by weight) and V (130.83–255.19 ppm), low in SiO2 (47.15–54.57%), medium to high in MgO (5.33–12.58%) and Mg # (58–66) and the compatible element contents (Cr = 31.70–352.11 ppm, Co = 41.24–135.74 ppm and Ni = 48.01–148.89 ppm) which indicate that the magma parent of these mafic rocks would be of mantle origin and would have undergone a very low rate of contamination during their ascent. All samples have high Ba (185–1990 ppm) and Sr (350–708 ppm), higher than average values in the crust (Ba = 259–628 ppm and Sr = 282–348 ppm) which justifies the hypothesis of a very low contamination rate. The basalts were controlled by fractionation of olivine and apatite, while the dolerites would be the products of the accumulation of plagioclase. The pyroclastics of the study area are pozzolans low carbon cement materials. They are used artisanally for mortars to make construction blocks with pozzolan cement and water mixtures. Moreover, dolerite shows nice plagioclase laths, beautifying the rocks for tiles manufacture. The value of denstity (2.7) and water absorption (0.4%) are good for low carbon dimension stones production to replace tiles made of clay that pollute the environment through pyroprocess during their manufacture. Also, the huge outcrops of basalts are good resources for gravel and sand production. All these recent mafic materials are good resources for sustainability.

Keywords:

Foumbot-Koutaba; Mantle Origin; Pozzolan; Tiles; Sustainability; Resources

References

[1] ] Kamgang, P., 1986. Contribution à l’étude géochimique et pétrologique du massif du Nkogham (pays Bamoun, Ouest Cameroun). Thèse de Doctorat, 3eme cycle. Université de Yaoundé I, Cameroun, 231–250.

[2] Moundi, A., 1993. Le massif du Mbam (Pays Bamoun, Ouest-Cameroun) : Volcanologie, Pétrologie et Géochimie. Thèse de Doctorat, 3e cycle, Université de Yaoundé I, 108–110

[3] Wandji, P., 1998. Données nouvelles sur les quatre types de volcans de la plaine du Noun (Ouest-Cameroun). In Geosciences au Cameroun, J P VICAT et P BILONG. ed; collect. GEOCAM, press. Université de Yaoundé I, Cameroun, 213–224.

[4] Mounjouohou, M.A., Moundi, A., Daouda, D., Ntieche, B., Morino Ganou, B., Michel., 2021. Effect of the use of volcanic Pozzolan from Mbepit Massif (West-Cameroon) on mechanical properties of mortar and composite cements production. Engineering Research Express, 3 (2021) 015034. https://doi.org/10.1088/2631-8695/abe954

[5] Vincent, P., 1970. The evolution of the tibesti volcanic province, eastern Sahara: in Clifford T M. and Gass IG. African magmatism and tectonics, Oliver and Boyd. Eds; Edinburgh, 301–307.

[6] Jacquemin, H., Sheppard, S., Vidal., 1982. Isotopic geochemistry (O, Sr, Pb) of the Golda Zuela and Mboutou anoregenic complexes, North Cameroon Line chain: mantle origin with evidence for crustal contamination. Earth planet. Sci. Lett, 97–109.

[7] Meyers, J., Rosendahl, B., Harrisson, C., Zan, Doug D., 1998. Deep Imaging Seismic and gravity result from the offshore Cameroon Volcanic Line, and speculation of African Hot Lines. Tectonophysics, 284, 32–63.

[8] Geze, B., 1943. Géographie physique et géologie du Cameroun occidental. Mém. Mus. Nation. Hist. Natur. Paris, 17, 273–274.

[9] Dumort, J., 1968. Carte géologique de reconnaissance du Cameroun à l’échelle 1/50000, Feuille Douala-Ouest avec notice explicative. Imprimerie nationale Yaoundé (Cameroun), 69 P.

[10] Tchoua, F., 1974. Contribution à l’étude géologique et pétrologique de quelques volcans de la ‘’Ligne du Cameroun’’ (monts manengouba et bambouto). Thèse de Doctorat d’Etat, Université clermont-ferrand, France, 336–337.

[11] Deruelle, B., 1982. Risque volcanique au Mont Cameroun. Revue de Géographie du Cameroun, Vol. III, N° 1, 30–40.

[12] Deruelle, B., Koumbou, C., Kambou, R., Lissom, J., Njonfang, E., Ghogomu, R., Nono, A., 1991. The Cameroon Line: a review: in magmatism is Extensional Structural Settings, A.B. Kapunzu et Lubala, R. T. Eds., Springer-Verlag, 274–327.

[13] Dunlop, H.M., Fitton, J.G., 1979. A K-Ar and Sr-isotopic study neath the North American Plate. J. Geophys.Res, 29, 14065–14090.

[14] Ngounouno, I., Déruelle, B., Montigny, R., Demaiffe, D., 2006. Les camptonites du Mont Cameroun, Cameroun, Afrique. Comptes Rendus Géoscience, 338, 537–544.

[15] Kagou, A., 2006. Le mont Manengouba : évolution volcanologique, caractères magmatologiques et risques naturels ; comparaison avec les monts Bambouto et Bamenda (Ligne du Cameroun). Thèse de Doctorat d’Etat, Université de Yaoundé I, Cameroun, 214–215.

[16] Zangmo Tefogoum, G., Kagou Dongmo, A., Nkouathio, D., Wandji, P., 2009. Typology of natural hazard and assessment of associated risk in the mont Bambouto caldeira (Cameroon Line, West Cameroon). Acta geologica sinica, 83, 5, 1008–1016.

[17] Nana, R., 2001. Pétrologie des péridotites en enclaves dans les basaltes alcalins de Nyos : Apport à la connaissance du manteau supérieur de la ligne du Cameroun. Thèse de Doctorat d’Etat, Université de Yaoundé I, 154 P.

[18] Moundi, A., Menard, JJ., Reusser, E., Tchoua, FM., Dietrich, VJ., 1996. Découverte de basaltes transitionnels dans le secteur continental de la Ligne du Cameroun (Massif du Mbam, Ouest Cameroun). C R Acad Sci Paris T 332, Iia, 831–837.

[19] Temdjim, R., 1986. Le volcanisme de la région de Ngaoundéré (Adamaoua Cameroun). Etude volcanologique et pétrologie. Thèse de Doctorat, 3eme cycle, Université Clermont-Ferrand II, 227–228.

[20] Ghogomu, R., 1984. Geology, geochemistry and petrology of the Ntumbaw anorogenic complex, Cameroun. An example of intermediate composition. Thèse de Doctorat, Spec, Université de Nancy,150–152.

[21] Lamilen, B., 1989. Étude pétrologique et géochimique du complexe pluto-volcanique du mont Koupé. Thèse de Doctorat, 3eme cycle, Université de Yaoundé I, 169–170.

[22] Gountié Dedzo, M., Nédélec, A., Nono, A., Njanko, T., Font, E., Kamgang, P., Njonfang, E., Launeau, P., 2011. Magnetic fabrics of the Miocène ignimbrites from West-Cameroun: implications for pyroclastic flow source and sedimentation. J Volcanol. Geotherm. Res, 203, 113–132.

[23] Nkouathio, D., 1997. Le volcanisme récent du graben de Tombel (province du Littoral et du Sud-Ouest, Cameroun) : volcanologie, géochimie, pétrologie et valeurs agricoles. Thèse de Doctorat, 3eme cycle, Université de Yaoundé I, 162P.

[24] Teitchou, M.I., Grégoire, M., Dantas, C., Tchoua F.M., 2007. Le manteau supérieur à l’aplomb de la plaine de Kumba (ligne du Cameroun), d’après les enclaves de péridotites à spinelles dans les laves basaltiques. C.R Geosciences, 339, 101–109.

[25] Bandji, D., 1994. Contribution à l’étude géologique et hydrogéologique de la plaine de Mbo (Ouest-Cameroun). Thèse de Doctorat, 3eme cycle, Université de Yaoundé I, 193–195.

[26] Wandji, P., Tchokona Seuwui, D., Bardintzeff, J. M., Bellon, H., Platevoet, B., 2008. Rhyolites of the Mbépit Massif in the Cameroon Volcanic Line: an early extrusive volcanic episode of Eocene age. Mineral. Petrol, 94, 217–286.

[27] Njonfang, E., 1998. Contribution à l’étude de la relation entre la ‘’Ligne du Cameroun’’ et la direction de l’Adamaoua : 1- pétrologie, géochimie et structure des granitoïdes panafricains de la zone de cisaillement Foumban-Bankim (Ouest-Cameroun et Adamaoua). 2-pétrologie et géochimie des formations magmatiques tertiaires associées. Thèse de Doctorat d’Etat, Université de Yaoundé I, 391 P.

[28] Fosso, J., Ménard J, J., Bardintzeff J, M., Wandji, P., Tchoua, FM., Bellon, H., 2005. Les laves du mont Bangou : une première manifestation volcanique éocène, à affinité transitionnelle de la Ligne du Cameroun. C R Géosc, 337, 315–325.

[29] Moundi, A., Wandji, P., Bardintzeff, J. M., Ménard, J. J., Okomo Atouba, L. C., Mouncherou, O. F., Reusser, E., Bellon, H., Tchoua, F. M., 2007. Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la Ligne Volcanique du Cameroun. C R Géoscience, 339, 396–406.

[30] Ngounouno, I., Déruelle, B., Demaiffe, D., Montigny, R., 2005. Les monchiquites de Tchircotché vallée de la haute Bénoué (Nord du Cameroun). Comptes Rendus Géoscience, 3-4, 167–190.

[31] Njome, M.S., de Wit, M.J., 2014. The Cameroon Line: analysis of an intraplate mag- matic province transecting both oceanic and continental lithospheres: con- straints, controversies and models. Earth-Sci. Rev. 139, 168–194 .

[32] Guimarães, A.R., Fitton, J.G., Kirstein, L.A., Barfod, D.N., 2020. Contemporaneous in- traplate magmatism on conjugate South Atlantic margins: a hotspot conun- drum. Earth Planet. Sci. Lett. 536, 116147 .

[33] Deruelle, B., Ngounouno, I., Demaiffe, D., 2007. The “Cameroon Hot Line” (CHL): A unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C R Geoscience, 339-9, 589–600.

[34] Wothoko, P., Wandji, P., Bardintzeff, J.-M., Bellon, H., 2005. Données pétrologiques et géochronologiques nouvelles sur le volcanisme alcalin néogène à récent de la rive ouest du Noun (plaine du Noun, Ligne du Cameroun). Review of the Bulgarian Geological Society, 66, 1–3.

[35] Cheriaf, M., Cavalcante, J., Pera, R., 1999. Pouzzolanic properties of pulverized coal combustion bottom ash. Cem Concr Res, 29, 1387–1391.

[36] A.N, Halliday ., A.P, Dickin., A.E, Fallick., J.G, Fitton., 1988. Mantle dynamics: a Nd, Sr, Pb, and Os isotopic study of the Cameroon Line Volcanic chain. J. Petrol. 29, 181–211

[37] Ntieche, B., Wokwenmendam, P., Moundi, A., Ram Mohan, M., Mounjouohou, M. A., Atsalang, C .G, and Nchouwet, Z., 2022. Arc magmatism in the Nkoula granitoid suites, Central African Fold Belt: evidence of a metasomatized high oxidized S and I type magma. International Journal of Earth Science, 531 (2022)

[38] Le Bas, M. J., Le Maitre, R. W., Streeckeisen, A., Zaneltin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol, 27, 745–750.

[39] Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey: Contributions to Mineralogy and Petrology, 58, 63–81.

[40] Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic

[41] basalts: implications for mantle composition and processes. In: Saunders, A.D.,

[42] Norry, M.J. (Eds.), Magmatism in Ocean Basins, 42. Geol. Soc London,

[43] –345.

[44] Mokhtaria, B., Fatiha, K., Abdelaziz, S., 2009. Durabilité des mortiers à base de pouzzolane naturelles et de pouzzolanes artificielles. Revue Nature et Technologie, 01, 63–73.

[45] Wang, Q., Xu, J.F., Zhao, Z.H., Bao, Z.W., Xu, W., Xiong, X.L., 2004. Cretaceous high-potassium intrusive rocks in the Yueshan? Hongzhen area of east China: adakites in an extensional tectonic regime within a continent. Geochem. J, 38, 417–434.

[46] Santosh, M., Teng, X.M., He, X.F., Tang, L., Yang, Q.Y., 2015. Discovery of Neoarchean

[47] suprasubduction zone ophiolite suite from Yishui Complex in the North China

[48] Craton. Gondwana Res. http://dx.doi.org/10.1016/j.gr.2015.10.017.

[49] Arth, J.G., 1976. Behavior of trace-elements during magmatic processes-summary of

[50] theoretical models and their applications. J. Res. U.S, Geol. Surv, 4, 41– 47.

[51] Zhang, X.H., Xue, F.H., Yuan, L.L., Ma, Y.G., Wilde, S.A., 2012. Late Permian appinite granite complex from northwestern Liaoning, North China Craton: petrogenesis

[52] and tectonic implications. Lithos, 155, 201–217.

[53] Wang, Y.J., Zhao, G.C., Fan, W.M., Peng, T.P., Sun, L.H., Xia, X.P., 2007b. LA-ICP-MS U-

[54] Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes

[55] from western Shandong Province: implications for back-arc basin magmatism

[56] in the Eastern Block, North China Craton. Precambr. Res, 154, 107–124.

[57] Stern, R.J., 2002. Subduction zones. Rev. Geophys, 40, 1–38.

[58] Liu, S., Zou, H.B., Hu, R.Z., Zhao, J.H., Feng, C.X., 2006. Mesozoic mafic dikes from the

[59] Shandong Peninsula, North China Craton: petrogenesis and tectonic

[60] implications. Geochem. J, 40, 181–195.

[61] Wang, Y.J., Zhao, G.C., Cawood, P.A., Fan, W.M., Peng, T.P., Sun, L.H., 2008.

[62] Geochemistry of Paleoproterozoic (1770Ma) mafic dikes from the TransNorth China Orogen and tectonic implications. J. Asian Earth Sci, 33, 61–77.

[63] Peng, T.P., Wilde, S.A., Fan, W.M., Peng, B.X., Mao, Y.S., 2013. Mesoproterozoic high

[64] Fe-Ti mafic magmatism in western Shandong North China Craton: petrogenesis

[65] and implications for the final breakup of the Columbia supercontinent.

[66] Precambr. Res, 235, 190–207.

[67] Rollinson, H., 2008. Secular evolution of the continental crust: implications for crust evolution models. Geochemistry, Geophysics, Geosystems Q12010. http://dx.doi.org/10.1029/2008GC002262.

[68] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, Cambrige, 312.

[69] Mounjouohou, M.A., Moundi, A., Ntieche, B., Daouda, D., Michel, F., 2019. Characterization of pyroclastic Deposit from Three Different Areas within Foumbot Region (West-Cameroon): Comparative Studies of Their Effects as Pozzolanic Materials in Mortars and Cement Manufacture. Journal of Geoscience and Environment Protection, 7, 195–209. https://doi.org/10.4236/gep.2019.711014.

Downloads

How to Cite

Mounjouohou, A. M., Ntieche, B., Ntoumbé, M., Youpoungam, A. A., Dawai, D., & Moundi, A. (2025). Geochemical Characterization and Petrogenetic Implication of Recent Mafic Magmatism from Foumbot-Koutaba (West-Cameroon) and Their Potential as Sustainable Natural Resources. Advances in Geological and Geotechnical Engineering Research, 7(1), 1–14. https://doi.org/10.30564/agger.v7i1.8268

Issue

Article Type

Article