Use of Plant Extracts in the Control of Post-Harvest Fungal Rots in Apples

Authors

  • EL Alami Nabila Department of Biology, Faculty of Science, Moulay Ismail University, Meknes, Morocco
  • EL Attari Soufiyan Department of Biology, Faculty of Science, Moulay Ismail University, Meknes, Morocco

DOI:

https://doi.org/10.30564/jrb.v1i3.1563

Abstract

Different fungi alter apples in the post-harvest period, causing considerable economic losses and risks to consumer health due to the mycotoxins that some of these fungi produce. The control of these fungal alterations in apples is mainly dependent on the use of chemical fungicides, the effectiveness of which has been well proven. However, this use is subject to restrictions due to growing concerns about risks to human health and the environment and the continued development of pathogen resistance to commonly used fungicides. A new approach to control post-harvest fungi has been implemented through the application of plant extract.It is estimated that there are more than 250,000 higher plant species on Earth that can be evaluated for their antimicrobial bioactive chemical compounds. In recent decades, researchers have evaluated plant extracts and essential oils against fungi responsible for post-harvest apple rot. Interesting results have been obtained. The purpose of this project is to summarize and discuss the results of in vitro and in situ experiments of different literatures concerning the effects of compounds derived from plants on the control of fungi responsible for rotting apples in storage.

Keywords:

Plant extracts; Fungi rots; Apple; Postharvest; Essentiel oils; Biocontrol

References

[1] Abd el-khair, H. and W.M. Haggag. Application of some Egyptian medicinal plant extracts against potato late and early blights. Res. j. Agric. Biol. Sci. 2007, 3: 166-175.

[2] Achbani, E. H.. Développement d’une méthode de lutte biologique alternative à l’usage de pesticides contre les maladies de post-récolte des pommes. Périodique d’information du centre régional de la recherche agronomique de Meknes, Morocco, 2010.

[3] Agrios, G.N.. Plant Pathology. Elsevier Academic Press, Oxford, UK, 2005: 922.

[4] Ahmad , I., A. Z. Beg. Antimicrobial and phytochemical studies on 45 indian medicinal plants against multi-drug resistant human pathogens. Journal of Ethnopharmacology, 2001, 74: 113-123.

[5] Aguilar-Gonz´alez, A.E., E. Palou, A. l´Opez-malo. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against grey mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies, 2015, 32: 181-185. DOI: https://doi.org/10.1016/j.ifset.2015.09.003

[6] Alilou, H.. Etude phytochimique et antifongique de deux plantes du sud du maroc : Asteriscus graveolens subsp. odorus (schousb.) Greuter et Asteriscus imbricatus (Cav.) DC. Doctoral theses, Ibn zohr University, Faculty of Science. Morocco, 2012.

[7] Al-zoreky, N.S.. Antimicrobial activity of pomegranate (Punica granatum l.) fruit peels. Int. J. Food Microbiol. 2009, 134: 244–248.

[8] Ameziane N., H. Boubaker, H. Boudyach, F. Msanda, A. Jilal, A. Ait Benaoumar. Antifungal activity of Moroccan plants against citrus fruit pathogens. Agron. Sustain. Dev. 2007, 27 (3): 273–277

[9] Amborabé, B.E., P. Fleurat-lessard, J.-F. Chollet, G. Roblin. Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: Structure–activity relationship. Plant Physiol. Biochem, 2002, 40: 1051–1060

[10] Amiri A., R. Dugas, A.L. Pichot, G. Bompeix. - in vitro and in vivo activity of eugenol oil (Eugenia caryophyllata) against four important postharvest apple pathogens. Intern. J. Food Microbiol., 2008, 126: 13-19.

[11] Andersen B, Smedsgaard J, Frisvad JC. Consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry, 2004, 52: 2421-2428.

[12] Arraiza M. P., A.Gonzalez-Coloma, M. FE Andres, M. Berrocal-Lobo, J. A. Dominguez- Núñez, A. Cidral Da Costa Jr, J. Navarro-Rocha and J., C. Calderon-Guerrerro. Antifungal effect of essential oils. Open Access books, 2018, 8 chapter. http://dx.doi.org/10.5772/intechopen.78008

[13] Askarne L., I. Talibi, H. Boubaker, E.H. Boudyach, F. Msanda, B. Saadi, M.A. Serghini, A. Ait Ben Aoumar. In vitro and In vivo antifungal activity of several moroccan plants against Penicillium italicum, the causal agent of citrus blue mold. Crop Prot, 2012, 40: 53 –58.

[14] Askarne L., I. Talibi, H. Boubaker, E.H. Boudyach, F. Msanda, B. Saadi, A. Ait Ben Oumar. Use of Moroccan medicinal plant extracts as botanical fungicide against citrus blue mould. Lett Appl Microbiol, , 2013, 56: 37 –43.

[15] Attrassi K., K. Selmaoui, A. Ouazani Touhami, A. Badoc, A. Douira. Biologie et physiologie des principaux agents fongiques de la pourriture des pommes en conservation et lutte chimique par l’azoxystrobine. Bull. Soc. Pharm. Bordeaux, 2005, 144: 47-62.

[16] Attrassi K., R. Benkirane, B. Attrassi, A. Badoc, A. Douira. Efficacité de deux fongicides benzimidazolés et de l’anilinopyrimidine sur la pourriture des pommes en conservation. Bull. Soc. Pharm. Bordeaux, 2007, 146, 195-210.

[17] Bachman S.. State of the world’s plants report, Royal Botanic Gardens, Kew, 2016: 7/84. ISBN: 978-1-84246-628-5

[18] Bachiri l, M. Bammou, G. Echchegadda, J. Ibijbijen, L. El Rhaffari, Z. Haloui, L. Nassiri. Composition chimique et activité antimicrobienne des huiles essentielles de deux espèces de lavande : Lavandula dentata spp. dentata et Lavandula peduncultata spp. pedunculata. European Scientific Journal, , 2017, 13(21): 293–311. DOI: https://doi.org/10.19044/esj.2017.v13n21p293

[19] Banani H., I. Olivieri, K. Santoro, A. garibaldi, M. L. Gullino, D. Spadaro. Thyme and Savory essential oil efficacy and induction of resistance against Botrytis cinerea through priming of defense responses in apple. Foods (Basel, Switzerland), 2018, 7(2): 11. DOI: https://doi.org/10.3390/foods7020011

[20] Belabbes R.. Recherche de nouveaux principes actifs presents dans cinq plantes de la famille des Asteraceas, Faculte des sciences – Departement de chimie pour l’obtention du diplôme de Doctorat, Universite Aboubekr Belkaid – Tlemcen, Republique Algerienne Democratique et Populaire. dspace.univ-tlemcen.dz, 2018.

[21] Bisogno, F., L. Mascoti, C. Sanchez, F. Garibotto, F. Giannini, M. Kurina-Sanz, R. Enriz. Structure-antifungal activity relationship of cinnamic acid derivatives. J. Agric. Food Chem. 2007, 55: 10635–10640.

[22] Bompeix G., D. Gholodowski-Faivre. Apple alternative control method against storage diseases: thermotherapy and natural products, an emerging technology. Arboriculture Fruitière, 2000, 542: 19-25 ref.9.

[23] Bondoux P. (éd). Maladies de conservation des fruits à pépins, pommes et poires. INRA et PHM (Revue Horticole), Paris, France, 1992: 173.

[24] Chebli B. ; M. Achouri ; L.M. Idrissi Hassani ; M. Hmamouchi. Chemical composition and antifungal activity of essential oils of seven Moroccan labiatae against Botrytis cinerea pers: Fr. J Ethnopharmacol. 2003, 89 (1): 165-9. DOI: https://doi.org/10.1016/s0378-8741(03)00275-7

[25] Cosić, J., K. Vrandečić, J. Postic, D. Jurković, M. Ravlić. In vitro antifungal activity of essential oils on growth of phytopathogenic fungi. Poljoprivreda, 2010, 16(2): 25-28.

[26] Da rocha neto A.C.; M. Maraschin; & R.M. Di Piero. Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 2015, 215: 64–70. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.08.018

[27] Da rocha neto A.C., M. Maraschin, R.M. Di Piero. Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int. J. Food Microbiol. 2016, 221: 54–60. DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.01.007

[28] Da rocha neto A.C., R. Beaudry, M. Maraschin, R. M. Di piero, E. Almenar. double-bottom antimicrobial packaging for apple shelf-life extension. Food Chemistry. Food Chem. 2019a, 1(279): 379-388. DOI: https://doi.org/10.1016/j.foodchem.2018.12.021

[29] Da rocha neto, a.c., Navarro, b.b., Canton, l., Maraschin, m., Di piero, r.m. Antifungal activity of palmarosa (Cymbopogon martinii), tea tree (Melaleuca alternifolia) and star anise (Illicium verum) essential oils against Penicillium expansum and their mechanisms of action, LWT - Food Science and Technology , 2019b, 105, 385-392. DOI: https://doi.org/10.1016/j.lwt.2019.02.060

[30] Deferera D.J., B.N. Ziogas, M.G. Polissiou. GC-MS analysis of essential oils from some greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem., 2000, 48: 2576-2581

[31] Di venere, D., V. Linsalata, A. Ippolito, F. Nigro, P. Arcuti, V. Lattanzio. Endogenous phenolics, ripening and susceptibility of strawberry fruits (fragaria x ananassa duch.) to post-harvest diseases. in: Charbonnier, Delacotte, Rolando (eds.), polyphenols communications 98, Proceedings of xix International Conference on Polyphenols. Lille, France, 1998: 459–460.

[32] Dubey N.K.. Natural products in pest management. London, Cab international. 2011: 280.

[33] Embaby E.M.; M.M. Hazaa; Kh El-Dougdoug ; M.O. Abdel Monem ; M. M. AbdElgalil; E.E. Elwan. Control Apple Fruit Decay by Using ‘Ethanol Extract of Propolis’ (EEP) International Journal of Advances in Medical Science. 2019, 4(03): 01 – 11. Available online at: http://ijams.kibanresearchpublications.com/index.php/IJAM

[34] Engels C., M. Knödler, Y.Y. Zhao, R. Carle, M.G. Gänzle, A. Schieber. Antimicrobial activity of gallotanninis isolated from mango (Mangifera indica l.) kernels. J. Agric. Food Chem. 2009, 57: 7712–7718.

[35] Fallik E. ; S. Grinberg. Hinokitiol: A natural substance that controls postharvest diseases in eggplant and pepper fruits. Postharvest Biology and Technology, 1992, 2(2): 137-144.

[36] Frankova A., J. Smid., A. bernardos, A . Finkousova, P. Marsik, D. Novotny, V. Legarova, J. Pulkrabek, P. Kloucek. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control, 2016, 68: 62-68.

[37] Gatto A., B. Ippolito, vito Linsalataa, nicholas a. Cascaranoa, franco Nigro b, sebastiano Vanadiaa, donato Di venere, activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 2011, 61(1): 72-82.https://doi.org/10.1016/j.postharvbio.2011.02.005

[38] Giraud M., C. Coureau. Le point sur les maladies et ravageurs : Les gloesprioses. Ctifl N°, 2014, 5: 1-8.

[39] Giraud M., et A. Moronvalle. Post-harvest diseases of apple: biology and epidemiology of Gloeosporium rots, 2012.

[40] Goncalves, M.J., M.T. Cruz, C. Cavaleiro, M.C. Lopes, L. Salgueiro. Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus Zygis subsp. Sylvestris. Industrial crops and products, 2010, 32: 70-75.

[41] Hmiri S., M. Rahouti, Z. Habib, B. Satrani, M Ghanmi, M. El ajjouri, évaluation du potentiel antifongique des huiles essentielles de mentha pulegium et d’eucalyptus camaldulensis dans la lutte biologique contre les champignons responsables de la détérioration des pommes en conservation, 2011.

[42] Jansiewicz, W.. Blue mold. Penicillium spp. Fruit Disease Focus, 1999 [en ligne]. disponible sur word wide web: http://www.caf.wvu.edu/kearneysville/disease_month/bluemold0199.html

[43] Janisiewicz, W.J. & L. Korsten. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 2002, 40: 411-441

[44] Burgiel, Z. J. and M. Smaglowski. Fungistatic properties of tea tree oil. Zesz. Probl. Post. Nauk Roln. 2008, 529: 13-18.

[45] Jijakli, H.M.. Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. Antonie Van Leeuwenhoek, 2011, 99: 93–105. DOI: https://doi.org/10.1007/si0482-010-954i-2

[46] Kalidindi N. ; N. V. Thimmaiah ; N. V. Jagadeesh ; R. Nandeep ; S. Swetha ; B. Kalidindi. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves, Journal of Food and Drug Analysis, 2015: 1-8. http://dx.doi.org/10.1016/j.jfda.2015.04.012

[47] Karade V. M. and D.M. Sawant. Effect of some plant extracts on the spore germination of Alternaria alternata. Plant Disease Research, 1999, 14: 75-77.

[48] Khia A., M. Ghanmi, B. Satrani, A. Aafi, M. Aberchane, B. Quaboul, A. Chaouch, N. Amusant, Z. Charrouf. Effet de la provenance sur la qualité chimique et microbiologique des huiles essentielles de Rosmarinus officinalis l. du maroc. Phytothérapie, 2014, 12: 341–347.

[49] Kordali S., R. kotan, A. Mavi, A. Cakir, A. Ala, A. Yildirim. Determination of the Chemical Composition and Antioxidant Activity of the Essential Oil of Artemisia dracunculus and of the Antifungal and Antibacterial Activities of Turkish Artemisiaabsinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera Essential Oils. . Agric. Food Chem. 2005, 53(24): 9452-9458

[50] Korukluoglu, M., Y. Sahan, A. Yigit. Antifungal properties of olive leaf extracts and their phenolic compounds. J. Food Safety, 2008, 28: 76–87.

[51] Kumari N., J. N. Sharma and D. Singh. Antifungal Activity of Skin Coatings against Post Harvest Rots of Apple Cultivar Starking Delicious. International Journal of Economic Plants. 2019, 6(2):078-081. DOI: https://doi.org/10.23910/ijep/2019.6.2.0300

[52] Laghchimi A., M. Znini ; L.Majidi, F. Renucci, A. El Harrak, J. Costa. Composition chimique et effet des phases liquide et vapeur de l’huile essentielle de lavandula multifida sur la croissance mycélienne des moisissures responsables de la pourriture de la pomme (chemical composition and effect of liquid and vapor phase of Lavandula multifida essential oil on mycelial growth of fungi responsible for the rot of apple). J. Mater. Environ. Sci. 2014, 5(6): 1770- 1780.

[53] Lattanzio V., V. De cicco, D. Di venere, G. Lima, M. Salerno. Antifungal activity of phenolics against fungi commonly encountered during storage. Ital. J. Food Sci. 1994, 6: 23–30.

[54] Lattanzio V., D. Di Venere, V. Linsalata, G. Lima, A. Ippolito, M. Salerno. Antifungal activity of 2,5-dimethoxybenzoic acid on postharvest pathogens of strawberry fruits. Postharvest Biol. Technol. 1996, 3: 325–334.

[55] Lattanzio V.. Bioactive polyphenols: their role in quality and storability of fruit and vegetables. J. Appl. Bot. 2003, 77: 128–146.

[56] Lboumhamdi A ; M. Znini, J. Paolini, J. Costa et L. Majidi, composition chimique et biocontrole de l’huile essentielle des graines de celeri (Apium graveolens l.) contre Botrytis cinerea après la récolte des pommes. American Journal of Innovative Research and Applied Sciences, 2018, 2(9): 292-300.

[57] Lee S.H., K.S. Chang, M. S. Su, Y.S. Huang H.D. Jang. Effects of some Chinese medicinal plant extracts on five different fungi. Food Control, 2007, 8(12): 1547-1554.

[58] Lima G., F. De Curtis, R. Castoria, V. De Cicco. Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis Against Post-harvest Rots on Different Fruits. Biocontrol Science and Technology, 1998, 8: 257-267

[59] Liu J., Y. Sui, M. Wisniewski, S. Droby, Y. Liu. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 2013, 167: 153–160.

[60] Lubello P.. Les évolutions récentes du marché mondial de la pomme : l’effet régionalisant des contraintes phytosanitaires ? 10èmes Journées de Recherches en Sciences Sociales, 8-9 décembre, 2016.

[61] Mandal, S., N. Mallick, A. Mitra. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersiciin tomato. Plant Physiol. Bioch. 2009, 47(7): 642–649. DOI: https://doi.org/10.1016/j.plaphy.2009.03.001

[62] Manssouri M. ; A. Znini ; A. El harrak, L. Majidi. Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus coss. & dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. J App Pharm Sci, 2016, 6 (05): 131- 136. DOI: https://doi.org/10.7324/japs.2016.60520

[63] Manning M., H. Percy. Dry eye rot (Botrytis cinerea) in apples and pears. An introduction to the disease. The Horticulture and Food Research Institute of New Zealand ltd, 1997.

[64] Nair N.G., S. Guilbaud Oulton, I. Barchia, R. Emmett. Significance of carry over inoculum, flower infection and latency on the incidence of Botrytis cinerea in berries of grapevines at harvest in new south wales. Australian Journal of Experimental Agriculture, 1995, 35: 1177– 80.

[65] Mari M. and M. Guizzardi. The post-harvest phase: Emerging technologies for the control of fungal diseases. Phytoparasitica, 1998, 26: 59-66.

[66] Marin S., A.Velluti, A.J. Ramos, V. Sanchis. Effect of essential oils on zearalenone and deoxynivalenol production by fusarium graminearum in non-sterilized maize grain. Food Microbiology, 2004, 21: 313-318.

[67] Mbili N., F. Vries, U. L. Opara, C. Lennox. Chemical composition and antifungal activity of Citrus and lemongrass essential oils in combination with cold storage regimes against Botrytis cinerea. IOBCWPRS Bulletin, 2015, 110: 165-168.

[68] Megzari A., A. Farah, M. Iraqui houssaini, El M. El hadrami. Provenance effect on the yield, chemical composition and antibacterial activity of moroccan rosemary essential oils. Der Pharma Chemica, 2015, 7(10): 459-472

[69] Nabigol A. and H. Morshedi. Evaluation of the antifungal activity of the iranian thyme essential oils on the postharvest pathogens of strawberry fruits. African Journal of Biotechnology. 2011, 10(48): 9864- 9869. DOI: https://doi.org/10.5897/AJB10.2018

[70] Nicosia M.G.L.D., S. Pangallo, G. Raphael, F. V. Romeo, M. C. Strano, P. Rapisarda, S. Droby, L. Schena. Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biol. Technol. 2016, 114: 54–61.

[71] Ojala, T. ; S. Remes ; P. Haansuu ; H. Vuorela ; R. Hiltunen ; K. Haahtela ; P. Vuorela. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J. Ethnopharmacol. 2000, 73: 299–305

[72] Okemo P.O. ; H.P. Bais ; J.M. Vivanco - Fitoterapia. In vitro activities of Maesa lanceolata extracts against fungal plant pathogens. Fitoterapia, 2003, 74: 312-316.

[73] Ortuno A., A. Báidez, P. Gómez, M.C. Arcas, I. Porras, A. García-lidón, J.A. Del Río. Citrus paradisi and Citrus sinensis flavonoids: their influence in the defence mechanism against Penicillium digitatum. food chem. 2006, 98: 351–358.

[74] Parveen S., A.H. Wani, M.Y. Bhat, J.A. Koka. Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts – A review. – Czech Mycol. 2016, 68(1): 41–66.

[75] Panahirad, S., F. Zaare-nahandi, R. Safaralizadeh, S. Alizadeh-salteh. Postharvest control of Rhizopus stolonifer in peach (Prunus persica l. batsch) fruits using salicylic acid. J. Food Safety, 2012, 32(4): 502–507. DOI: https://doi.org/10.1111/jfs.12013

[76] Pandey A.K., P. Kumar, P. Singh, N.N. Tripathi, V.K. Bajpai. Essential oils: sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7: 2161. DOI: https://doi.org/10.3389/fmicb.2016.02161

[77] Parashar A., C. Gupta, S.K. Gupta, A. Kumar. Antimicrobial ellagitannin from pomegranate (Punica granatum) Fruits. Int. J. Fruit Sci. 2009, 9: 226–231.

[78] Pontes F. C., V. C. P. Abdalla, M. Imatomi, L. F. G. Fuentes, S. C. J. Gualtieri. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw.) DC. Braz. J. Biol. 2019, 79(1). http://dx.doi.org/10.1590/1519-6984.179829

[79] Qin, X. ; H. Xiao ; C. Xue ; Z. Yu ; R. Yang ; Z. Cai ; L. Si. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest biol. tec. 2015, 100, 160–167. DOI: https://doi.org/10.1016/j.postharvbio.2014.09.010.23

[80] Raji R. ; K. Raveendran. Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger. Asian J. plant Sci. Res. 2013, 3: 13–15.

[81] Rauha, J.P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, P. Vuorela. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56: 3–12.

[82] Romagnoli C., R. Bruni, E. Andreotti, M.K. Rai, C.B. Vicentini, D. Mares. Chemical characterization and antifungal activity of essential oil of Capitula from wild Indian tagetes Patula L. protoplasma, 2005, 225 (1–2): 57–65.

[83] Rosenberger D.A.. Post-harvest diseases (blue moldgray mold). In jones A.L., aldwinckle H.S., eds. compendium of apple and pear diseases. Aps Press the American Phytopathological Society, USA, 1991: 53-58.

[84] Roussel M. ; M. Lemarchand ; M. BENARD ; J. DREYFUS. La patuline. Fiche technique du Service Régional de la Protection des Végétaux de Haute-Normandie, 2007.

[85] Sanderson P.G.. Management of decay around the word and at home. 16th annual postharvest conference, yakima, 2000 [online]. Available on world wide web: http://postharvest.tfrec.wsu.edu/pgdisplay.php?article=pc2000z

[86] Santas J., M.P. Almajano, R. Carbó. Antimicrobial and antioxidant activity of crude onion (allium cepa, l.) extracts, international journal of food science and technology. 2010, 45: 403–409

[87] Sanzani S. M., A. De girolamo, L. Schena, M. solfrizzo, A. Ippolito, A. Visconti. Control of Penicillium expansum and patulin accumulationon apples by quercetin and umbelliferone. Eur Food Res Technol, 2009, 228: 381–389. DOI: https://doi.org/10.1007/s00217-008-0944-5

[88] Sanzani, S.S., L. Schena, A. Girolamo, A. Ippolito, L. Gonzalez-candela. Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biol. Technol. 2010, 56: 1–11.

[89] Schena, L., F. Nigro, A. Ippolito. Natural antimicrobials to improve storage and shelf-life of fresh fruit vegetables and cut flowers. in: Ray, R.C., Ward, O.P. (eds.), Microbial Biotechnology in Horticulture, Vol. 2. Science Publisher, Enfield, NH, USA, 2008: 259–303

[90] Sevely, C.. Fiche technique pomme: production développée en Languedoc Roussin. Chambre d’Agriculture de l’Hérault. 2008: 8.

[91] Shama H., N. Amrani, M. Rahouti. Détermination In vitro de l’activité antifongique des vapeurs d’eugénol et d’huiles essentielles de Mentha pulegium l. et de Tanacetum annuum l. vis-à-vis de trois champignons responsables de la pourriture des pommes en post-récolte, Acta Botanica Gallica, 2011, 158: 4, 609-616. DOI: https://doi.org/10.1080/12538078.2011.10516298

[92] Sharma K., H. Raj. Efficacy of botanical formulations and fungicides against Botryosphaeria dothidea, causing white rot in apple (Malus × domestica Borkh.). Journal of Applied and Natural Science, 2017, 9 (3): 1434 - 1439.

[93] Sharma, N., A. Tripathi. Fungitoxicity of the essential oil of Citrus sinensis on post-harvest pathogens. World J. Microbiol. Biotechnol. 2006, 22: 587. DOI: https://doi.org/10.1007/s11274-005-9075-3

[94] Talibi, H. Boubaker, E.H. Boudyach, A. Ait Ben Aoumar. Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology, 2014, 117: 1-17. DOI: https://doi.org/10.1111/jam.12495

[95] Teixeira B., A. Marques, C. Ramos, N.R. Neng, J.M.F. Nogueira, J.A. Saraiva, M.L. Nunes. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43: 587–595.

[96] Terry, L.A., D.C. Joyce, N.K.B. Adikaram, B.P.S. Khabay. Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biol. Technol. 2004, 31: 201–212.

[97] Tripathi P., N.Kdubey . Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology. 2004, 32(3): 235-245.

[98] Veloz-García, R., R. Marín-Martínez, R. Veloz-Vodríguez, R. Rodríguez-Guerra, I. Torres-Pacheco, M.M. González-Chavira, J.L. Anaya-López, L. Guevara-Olvera, A.A. Feregrino-Pérez, G. Loarca-Pina, R.G. Guevara-González. Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Ind. Crops Prod. 2010, 31: 134–138

[99] Vera ´stegui A ´., J. Verde ; S. Garcı ´a, N. Heredia, A. Oranday, C. Rivas. Species of Agave with antimicrobial activity against selected pathogenic bacteria and fungi. World J Microbiol Biotechnol, 2008, 24: 1249–1252. DOI: https://doi.org/10.1007/s11274-007-9563-8

[100] Verhoeff K. ; J. I. Liem. Toxicity of tomatine to botrytis cinerea, in relation to latency. Journal of phytopathology, 1975, 82: 333—338. https://doi.org/10.1111/j.1439-0434.1975.tb03499

[101] Vieira F., M. Amanda, C. A. Steffens, L.C. Argenta, C.V. Talamini do Amarante, A.H. Oster, R. T. Casa, A.G.M. Amarante, B.P. espíndola. Essential oils for the postharvest control of blue mold and quality of ‘fuji’ apples. Pesq. Agropec. Bras., Brasília, 2018,53(5): 547-556. DOI: https://doi.org/10.1590/S0100-204X2018000500003

[102] Wang, Y.Y, B.Q. li, G.Z. Qin, L. li, S.P. Tiana. Defense response of tomato fruit at different matu-rity stages to salicylic acid and ethephon. Sci. Hortic. 2011, 129 (2): 183–188. DOI: https://doi.org/10.1016/j.scienta.2011.03.021

[103] Widmer T.L., N. Laurent. Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of phytophthora spp. pathogenic to Theobroma cacao. Eur. J. Plant Pathol. 2006, 115: 377–388.

[104] Wilson C.L., J.M. Solar, A. El ghaouth, M.E. Wisniewski. Rapid evaluation of plant extracts and essential oils for antifungal activity against Botrytis cinerea. Plant Dis. 1997, 81: 204-210.

[105] Wodnicka A., E. Huzar, M. Krawczyk, H. Kwiecień. Synthesis and antifungal activity of new salicylic acid derivatives. Polish Journal of Chemical Technology, 2017, 19(1): 143—148. DOI: https://doi.org/10.1515/pjct-2017-0019

[106] Yahyazadeh M., R. Zare, R. Omidbaigi, M. Faghih-nasiri, M. Abbasi. Control of Penicillium decay on citrus fruit using essential oil vapours of thyme or clove inside polyethylene and nano-clay polyethylene films. The Journal of Horticultural Science and Biotechnology, 2009, 84: 403–409.

[107] Yoshida T., T. Hatano, H. Ito, T. Okuda. Structural diversity and antimicrobial activities of Ellagitannins. In: Quideau, S. (ed.), Chemistry and Biology of Ellagitannins: An underestimated class of bioactive polyphenols. World Scientific Publishing CO. PTE Ltd, Hackensack, NJ, USA, 2009: 55–93.

[108] El Ouadi Y., M. Manssouri, A. Bouyanzer, L. Majidi, N. Lahhit, H. Bendaif, J. Costa, A. Chetouani, H. Elmsellem, B. Hammouti. Essential oil composition and antifungal activity of Salvia officinalis originating from North-East Morocco, against postharvest phytopathogenic fungi in apples. Der Pharma Chemica, 2015, 7 (9): 95-102. http://derpharmachemica.com/archive.html

[109] Yu T., X.D. Zheng. Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentiiin apple fruit. j. plant growth regul. 2006, 25(2): 166–174. DOI: https://doi.org/10.1007/s00344-005-0077-z

[110] Zaker M.. Natural plant products as eco-friendly fungicides for plant diseases control- A Review. The Agriculturists, 2016, 14(1): 134-141.

[111] Zhang H., L. ma, L. Wang, S. Jiang, Y. Dong, X. Zheng. Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol. Control, 2008, 47(1): 60–65. DOI: https://doi.org/10.1016/j.biocontrol.2008.06.012

[112] Zhu X., H. Zhang, R. lo. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus l.) and their antimicrobial activities. J. Agric. Food Chem. 2004, 52: 7272–7278.

[113] Znini M., G. Cristofari, L. majidia, H. Mazouz, P. Tomib, J. Paolinib, J. Costa. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat Prod Commun. 2011, 6(11): 1763-8.

[114] Znini M., G. Cristofari, L. Majidi, A. El harrak, J. Paolini, J. Costa. In vitro antifungal activity and chemical composition of Warionia saharae essential oil against 3 apple phytopathogenic fungi. Food Sci. Biotechnol, 2013, 22(S): 113-119. DOI: https://doi.org/10.1007/s10068-012

Downloads

How to Cite

Nabila, E. A., & Soufiyan, E. A. (2019). Use of Plant Extracts in the Control of Post-Harvest Fungal Rots in Apples. Journal of Botanical Research, 1(3), 27–41. https://doi.org/10.30564/jrb.v1i3.1563

Issue

Article Type

Review