-
28909
-
18197
-
3310
-
1392
-
1245
Microbial Biocontrol of Post-harvest Fungal Rot in Apples: Current State of the Science
DOI:
https://doi.org/10.30564/jrb.v2i4.2064Abstract
Our study consists of a careful literature review carried out with the aim of better understanding the models developed in the field of biocontrol of postharvest fungal rot in apples (PHFRA) over the past two decades. It aims, more specifically, to shed light on the progress made by examining the products developed, their nature, their target pathogens, their effectiveness, theirs modes of action and the stage of their development. The post-harvest biocontrol of apples has made remarkable progress during the last twenty years of research. Several products (yeasts, bacteria, filamentous fungi and actinomycetes) have been selected. Some, are already marketed, others are at different stages of development. However, several points limit the optimal use of microbial antagonists in the bio-management of post-harvest apple rots as an alternative to chemicals. It is, in fact, still necessary to develop appropriate formulations of these microbial biocontrol agents, to better study their mechanisms of action, to test them under commercial conditions and against a broad spectrum of pathogens and hosts. However, although sometimes considered less effective than chemical treatments, biocontrol products based on microorganisms have major advantages for an application in an integrated post-harvest apple protection strategy.Keywords:
Microbial antagonists; Fungi rots; Post-harvest; Apple; BiocontrolReferences
[1] Lubello P. Les évolutions récentes du marché mondial de la pomme: l’effet régionalisant des contraintes phytosanitaires? 10èmes Journées de Recherches en Sciences Sociales, 2016, 8-9.
[2] FAOSTAT. FAO website Accessed July 1, 2020. http://www.fao.org/faostat/fr/#data/
[3] Tonelli, N., F. Gallouin. Des fruits et des graines comestibles du monde entier. Lavoisier, 2013: 736.
[4] Aprifel. Site internet de l’agence des fruits et des légumes frais. Fiches nutritionnelles par produits: la pomme, 2008. http://www.aprifel.com/fiches,produits.
[5] Eberhardt M. V., C. Y. Lee et R. H. Liu. Antioxidant activity of fresh apples. Nature, 2000, 405: 903- 904.
[6] Jijakli M. H.. Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. J Gen MolMicrobiol, 2011, 99: 93- 105.
[7] Bondoux, P. Maladies de Conservation des Fruits à Pépins, Pommes et Poires. INRA (Inst. Natl. Rech. Agron.), Paris, Editions. 1992: 173. ISBN: 2738003575
[8] Janisiewicz, W. J., L. Korsten. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol, 2002, 40: 411-441.
[9] Attrassi K., K. Semaoui, A.O.Touhami, A.Badoc, A. Douira. Biologie et physiologie des principaux agents fongiques de la pourriture des pommes en conservation et lutte chimique par l’Azoxystrobine. Bull. Soc. Pharm. Bordeaux, 2005, 144: 47-62.
[10] Tang W., Z. Ding, Z. Zhou, Y. Wang, L. Guo. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis., 2012, 96: 486-496.
[11] Liu J., Y. Sui, M. Wisniewski, S. Droby, Y. Liu. (a). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 2013(167): 153- 160.
[12] El Alami N. and S. El Attari. Use of Plant Extracts in the Control of Post-HarvestFungal Rots in Apples. Journal of Botanical Research, 2019, 1(3): 27-41. DOI: https://doi.org/10.30564/jrb.v1i3.1563
[13] Sukmawati D., A. Shabrina, R. Indrayanti, et al. Antifungal mechanism of Rhodotorula mucilaginosa and Aureobasidium sp. nov. isolated from Cerbera manghas L. against the growth of destructive molds in postharvested apples [published online ahead of print, 2020 Apr 22]. Recent Pat Food Nutr Agric., 2020, DOI: https://doi.org/10.2174/2212798411666200423101159
[14] Achbani E.H., R. Mounir, El Jaafari S., A. Douira, A. Benbouazza, M.H. Jijakli. Selection of antagonists of postharvestappleparasites: Penicillium expansum and Botrytis cinerea. Commun. Appl. Biol. Sci., Ghent University, 2005, 70: 143-149.
[15] Amiri A., G. Bompeix. Diversity and population dynamics of Penicillium spp. on apples in pre-and postharvest environments: consequences for decay development. Plant Pathology, 2005, 54: 74-81.
[16] Morales H., S. Marin, A.J. Ramos, V. Sanchis. Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: a review. Food Control, 2010, 21: 953-962.
[17] Zhao H., Y. K. Kim, L. Huang, et C. L. Xiao. Resistance to Thiabendazole and Baseline Sensitivity to Fludioxonil and Pyrimethanil in Botrytis Cinerea Populations from Apple and Pear in Washington State. Postharvest Biology and Technology, 2010, 56(1): 12-18.
[18] Baert K., F.Devlieghere, A. Amiri, B. De Meulenaer. Evaluation of stratefies for reducing patulin contamination of apple juice using a farm to fork risk assessment model. In International Journal of Food Microbiology, 2012, 154: 119-129.
[19] Lima G., F. De Curtis, D. Piedimonte, A. S. Maria, V. De Cicco. Integration of biocontrol yeast and thiabendazole protects stored apple from fungicide sensitive and resistant isolate of Botrytis cinerea. Postharvest biology and technology, 2006, 40: 301- 307.
[20] Agreste. Pratiques phytosanitaires en arboriculture. Agreste Primeur,2015(323): 1-8. URL: http://agreste.agriculture.gouv.fr/IMG/pdf/primeur323.pdf
[21] Chu X.G., X.Z. Hu, H.Y. Yao. Determination of 266 pesticide residues in apple juice by matrix solid-phase dispersion and gas chromatography-mass selective detection. Journal of Chromatography A, 2005, 1063(1-2): 201-210.
[22] CunhaS.C., J.O. Fernandes, M.B.P.P. Oliveira. Fast analysis of multiple pesticide residues in apple juice using dispersive liquid-liquid microextraction and multidimensional gas chromatography-mass spectrometry. Journal of Chromatography A, 2009, 1216(51): 8835-8844.
[23] Han Q. Z. Wang, Application of graphene for the SPE clean-up of organophosphorus pesticides residues from apple juices. J. Sep. Sci., 2014, 37: 99- 105.
[24] Bertetti, D., A. Garibaldi, M. L. Resistance of Botrytis cinerea to fungicides in Italian vineyards. Commun Agric Appl Biol Sci., 2008, 73(2): 273- 282.
[25] Ajouz S., A. S. Walker, F. Fabre, P. Leroux, P. Nicot, et al. Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents.. BioControl, Springer Verlag, 2011, 56: 353-363. DOI: https://doi.org/10.1007/s10526-010-9333-7.hal-01000474
[26] Walker A. S., Micoud A., Remuson F., Grosman J., Gredt M., Leroux P. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Manag Sci., 2013, 69(6): 667-678. DOI: https://doi.org/10.1002/ps.3506
[27] Spadaro D., S. Droby. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 2016, 47: 39-49.
[28] Leibinger W., B.Breuker, M. Hahn, K. Mendgen. Control of postharvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology, 1997, 87: 1103-10.
[29] Jijakli, M.H., P. Lepoivre, C. Grevesse. Yeast species for biocontrol of apple postharvest disease: an encouraging case of study for practical use. In: Mukerj, K.G., Chamola, B.P., and Upadhyay, R.K., eds. Biotechnological approaches in biocontrol of plant pathogens. Klumer Academic / Plenum Publishers, New york, 1999: 31-49.
[30] Janisiewicz W.J., T.J. Tworkoski, C.P. Kurtzman. Biocontrol potential of Metchnikowia pulcherrima strains against blue mold of apple. Phytopathology, 2001, 91: 1098-1108.
[31] Droby, S., M. Wisniewski, D. Macarisin, C. Wilson. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol. Technol. 2009, 52: 137-145.
[32] Vero, S., G. Garmendia, M.B. González, O.Bentancur, M. Wisniewski. Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus × domestica). FEMS Yeast Res. 2013, 13: 189-199.
[33] Parveen S., A.H. Wani, M.Y. Bhat, J.A. Koka: Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts a review. Czech Mycol, 2016, 68(1): 41-66.
[34] Fravel D.R. Commercialization and implementation of biocontrol. Annu Rev Phytopathol. 2005;43:337- 359. DOI: https://doi.org/10.1146/annurev.phyto.43.032904.092924
[35] Droby S., M. Wisniewski, N. Teixidó, D. Spadaro, M. H. Jijaklie. The science, development, and commercialization of postharvest biocontrol products. Droby et al. Postharvest Biology and Technology, 2016, 122: 22-29. http://dx.doi.org/10.1016/j.postharvbio.2016.04.006
[36] Viñas I., J. Usall, N. Teixidó, V. Sanchis. Biological control of major postharvest pathogens on apple with Candida sake. International Journal of Food Microbiology, 1998, 40: 9-16.
[37] Vero S., P. Mondino, J. Burgueño, M. Soubes, M. Wisniewski. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple / Postharvest Biology and Technology, 2002, 26: 91-98.
[38] Blum, L., C. Amarante, R. Valdebenito-Sanhueza, L. Guimarães, A. Dezanet, P. Hack-Neto. Cryptococcus laurentii aplicado pós-colheita reduz o avermelhamento nas maçãs. Fitopatologia Brasileira, 2004, 29: 433-436.
[39] Gholamnejad J., H. R. Etebarian, N. Sahebani. Biological control of apple blue mold with Candida membranifaciens and Rhodotorula mucilaginosa. African Journal of Food Science, 2010, 4(1): 001- 007
[40] Sadeghian M., G.H.S. Bonjar, G.RS. Sirchi. Post harvest biological control of apple bitter rot by soilborne Actinomycetes and molecular identification of the active antagonist. Postharvest Biology and Technology, 2016, 112: 46 -54. http://dx.doi.org/10.1016/j.postharvbio.2015.09.035
[41] Arrarte E., G.Garmendia, C.Rossini, M.Wisniewski, S. Vero. Volatile organiccompoundsproduced by Antarcticstrains of Candida sakeplay a role in control of postharvestpathogens of apples. Biological Control, 2017, 109: 14-20.
[42] Lima, G., S.M. Sanzani, F. De Curtis, A. Ippolito. Biological control of postharvest diseases. In: Wills, R.B.H., Golding, J. (Eds.). Advances in Postharvest Fruit and Vegetable Technology, CRC Press, 2015: 65-81.
[43] Mari M., A.D. Francesco, P. Bertolini. Control of fruit postharvest diseases: old issues and innovative approaches. Stewart Postharvest Review, 2014. DOI: https://doi.org/10.2212/spr.2014.1.1
[44] Teixidó N., J. Garrabou, J.G. Harmelin. Low Dynamics, High Longevity and Persistence of Sessile Structural Species Dwelling on Mediterranean Coralligenous Outcrops. PLoS One, 2011, 6: e23744-e23744.
[45] Lahlali, R., B. Raffaele, M. H. Jijakli. UV protectants for Candida oleophila (strain O), a biocontrol agent of postharvest fruit diseases. Plant Pathology, 2011, 60: 288-295.
[46] Blachinsky, D., J. Antonov, A. Bercovitz, B. Elad, K. Feldman, A. Husid, M. Lazare, N. Marcov, I. Shamai, M. Keren-Zur, S. Droby. Commercial applications of “Sheme r” for the control of pre-and postharvest diseases. IOBCWPRS Bulletin, 2007, 30: 75-78.
[47] Demoz, B. T., L. Korsten. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biological Control, 2006, 37: 68-74.
[48] Cañamás T.P., I. Viñas, J. Usall, C. Casals, C. Solsona, N. Teixidó. Control of postharvest diseases oncitrus fruit by preharvest application of the biocontrol agent Pantoea agglomerans CPA-2: Part I. Study of different formulation strategies to improve survival of cells in unfavourable environmental conditions. PostharvestBiologyand Technology, 2008, 49(1): 86-95.
[49] Plaza, P., J. Usall, J.L. Smilanick, N. Lamarca, I. Viñas. Combining Pantoea agglomerans (CPA-2) and curing treatments to control established infections of Penicillium digitatum on lemons. J. Food Prot., 2004, 67: 781-786.
[50] Nunes C., J. Usall, N. Teixido, E. Fons, I. Vinas. Postharvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples. Journal of Applied Microbiology, 2002, 92(2): 247-255.
[51] Teixidó N., J. Usall, L. Palou, A. Asensio, C. Nunes, I. Vinas. Improving control of green and blue molds of oranges by combining Pantoea agglomerans (CPA-2) and sodium bicarbonate. European Journal of Plant Pathology, 2001, 107: 685-694.
[52] Janisiewicz W.J., S.N. Jeffers. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop. Prot. 1997, 16: 629-633.
[53] Sharma, R.R., D. Singh, R. Singh. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol. Control, 2009, 50: 205-221.
[54] Liu J., M. Wisniewski, S. Droby, J. Norelli, V. Hershkovitz, S. Tian, R. Farrell. Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiol. Ecol., 2012, 80: 578-590.
[55] Droby S., V. Vinokur, B. Weiss, L. Cohen, A. Daus, E.E. Goldschmidt, R. Porat. Induction of resistance to Penicillium digitatumin grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 2000, 92: 393-399.
[56] Janisiewicz W.J., T.J. Tworkoski, C. Sharer. Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology, 2000, 90(11): 1196-1200.
[57] Sansone, G., Y. Lambrese, V. Calvente, G. Fernández, D. Benuzzi, M. SanzFerramola. Evaluation of Rhodosporidiumfluviale as biocontrol agent against Botrytis cinerea on apple fruit. Lett. Appl. Microbiol., 2018: 66, 455-461. DOI: https://doi.org/10.1111/lam.12872
[58] Wallace R. L., D. L. Hirkala, L. M. Nelson. Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 2018, 117: 13-20. http://dx.doi.org/10.1016/j.biocontrol.2017.08.019.
[59] Agirman B, H. Erten Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing postharvest diseases [published online ahead of print, 2020 May 25]. Yeast, 2020. DOI: https://doi.org/10.1002/yea.3501
[60] Czarnecka M., B. Żarowska, X. Połomska, C. Restuccia, G. Cirvilleri. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants’ defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol, 2019, 83: 1-8. DOI: https://doi.org/10.1016/j.fm.2019.04.004
[61] Zhang Q., D. Yong, Y. Zhang, X. Shi, B. Li, G. Li, W. Liang, C. Wang. Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biology and Technology, 2016, 115: 30-37. http://dx.doi.org/10.1016/j.postharvbio.2015.12.013
[62] Lu H., L. Lu, L.Zeng, D. Fu, H. Xiang, T. Yu, X. Zheng. Effect of chitin on the antagonistic activity of Rhodosporidium paludigenum against Penicillium expansum in apple fruit. Postharvest Biology and Technology, 2014, 92: 9-15.
[63] Zhang D., D. Spadaro, A. Garibaldi, M.L. Gullino. Potential bio-control activity of a strain of Pichia guilliermondii against grey mold of apples and its possible modes of action. Biol Control, 2011, 57:193-201. https://doi.org/10.1016/j.biocontrol [2011.02.11]
[64] EL-Ghaouth A., C.L. Wilson, M. Wisniewski. Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology, 2003, 93: 344-348.
[65] de Capdeville, G., C. L. Wilson, S. V. Beer, J. R. Aist. Alternative disease control agents induce resistance to blue mold in harvested “Red Delicious” apple fruit. Phytopathology, 2002, 92: 900-908.
[66] Ippolito, A., F. Nigro. Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Prot., 2000, 19: 715-723.
[67] Liu J., M. Wisniewski, S. Droby, S. Tian, V. Hershkovitz, T. Tworkoski. Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola. FEMS Microbiol. Ecol., 2011, 76: 145-155.
[68] Liu J., M. Wisniewski, S. Droby, S. Vero, S. Tian, V. Hershkovitz. Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int. J. Food Microbiol., 2011, 146: 76-83.
[69] Macarisin, D., S. Droby, G. Bauchan, M. Wisniewski. Superoxide anion and hydrogen peroxide in the yeast antagonist-fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol. Technol., 2010, 58: 194-202.
[70] Castoria, R., L. Caputo, F. De Curtis, G. Lima, V. De Cicco. Resistance to oxidative stress of postharvest biocontrol yeast: A possible new mechanism of action. Phytopathology, 2003, 93: 564-572.
[71] Scherm, B., G. Ortu, A. Muzzu, M. Budroni, G. Arras, Q. Migheli. Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. J. Plant Pathol., 2003, 85: 205-213.
[72] Piano, S., V. Neyrotti, Q. Migheli, M.l. Gullino. Biocontrol capability of Metschnikowia pulcherrima against Botrytis postharvest rot of apple. Postharvest Biology and Technology, 1997, 11: 131- 140.
[73] Filonow A. B.. Role of Competition for Sugars byYeasts in the Biocontrol of Gray Mold of Apple, Biocontrol Science and Technology, 1998, 8: 2, 243-256, DOI: http://dx.doi.org/10.1080/09583159830315
[74] Saravanakumar, D., A. Ciavorella, D. Spadaro, A. Garibaldi, M.L. Gullino. Metschnikowiapulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 2008, 49: 121-128.
[75] Krimi Bencheqroun S., M. Bajji, S. Massart, M. Labhilili, S. El Jaafari, M.H. Jijakli. In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biol Technol. 2007, 46: 128-135.
[76] Krimi Bencheqroun, K.. Etude des mécanismes d’action impliqués dans le bio-contrôle d’une souche d’Aureobasidum pullulans (de Barry) Arnaud vis-à-vis de Penicillium expansum link sur pommes en post-récolte. Dissertation originale présentée en vue de l’obtention du grade de docteur en sciences agronomiques et ingénierie biologique. Université de Liege. 2009: 104.
[77] El Guilli M., E. Achbani, K. Fahad, M.H. Jijakli. Biopesticides: alternatives à la lutte chimique. In Symposium international “Agriculture durable en région Méditerranéenne (AGDUMED)”, Rabat, Maroc (14-16 mai), 2009: 266-280.
[78] Calvo J., V. Calvente, M.E. De Orellano, D. Benuzzi, M.I.S. DeTosetti. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 2007, 113: 251-257.
[79] Castoria R., F. De Curtis, G. Lima, L. Caputo, S. Pacifico, V. De Cicco. Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. PostharvestBiology and Technology, 2001, 22: 7-17
[80] Calvente, V., D. Benuzzi, M.I.S. de Tosetti. Antagonistic action of siderophores from Rhodotorulaglutinisupon the postharvest pathogen Penicillium expansum. International Biodeterioration & Biodegradation, 1999, 43(4): 167-172.
[81] Kwasiborski, A., M. Bajji, J. Renaut, P. Delaplace, H. Jijakli. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. PLoSOne, 2014, 9: e91434. DOI: http://dx.doi.org/10.1371/journal.pone.0091434
[82] Massart, S., D. De Clercq, M. Salmon, C. Dickburt, M.H. Jijakli. Development of real-time PCR using Minor Groover Binding probe to monitor the biological control agent Candida oleophila strain O). Journal of Microbiological Methods, 2005, 60: 73- 82.
[83] Giobbe S., S. Marceddu, B. Scherm, G. Zara, V. L. Mazzarello, M. Budroni, Q. Migheli. The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Research, 2007, 7(8): 1389-1398.
[84] Spadaro D., R. Vola, S. Piano, M.L. Gullino. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biology & Technology, 2002, 24(3): 123-134.
[85] Fan, H., J. Ru, Y. Zhang, Q. Wang, Y. Li. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res., 2017, 199: 89-97. DOI: https://doi.org/10.1016/j.micres.2017.03.004
[86] Rabosto X. , M. Carrau, A. Paz, E. Boido, E. Dellacassa, F. M. Carrau, A.J E. Vitic. Grapes and Vineyard Soils as Sources of Microorganisms for Biological Control of Botrytis cinerea, 2006, 57: 332- 338.
[87] Ongena M, P. Jacques, Y. Toure, J. Destain, A. Jabrane, P. Thonart. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol., 2005, 69: 29-38.
[88] Ortu, G., M.A. Demontis, M. Budroni, S. Goyard, C. d’Enfert, Q. Migheli. Study of biofilm formation in Candida albicans may help understanding the biocontrol capability of a florstrain of Saccharomyces cerevisiae against the phytopathogenic fungus Penicillium expansum. J. Plant Pathol., 2005, 87, Specialissue: 300 (abstract).
[89] Batta Y.A. Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. International Journal of Food Microbiology, 2004, 96: 281-288.
[90] Calvo H., I. Mendiara, E. Arias, D. Blanco, M.E. Venturini The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol., 2019, 82: 62-69. DOI: https://doi.org/10.1016/j.fm.2019.01.010
[91] Deng J.J., W.Q. Huang, Z.W. Li, D.L. Lu, Y. Zhang, X.C. Luo. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol., 2018, 112: 35-42. DOI: https://doi.org/10.1016/j.enzmictec.2018.02.002
[92] Guerrero-Prieto V., C. Guigon, D. Berlanga, D. Ojeda. Complete control of Penicillium expansum on apples fruit by using a combination of antagonistic yeast Candida oleophila. Chilean J Agric Res., 2014, 74 (4): 427-431.
[93] Francesco, A.D., L. Ugolini, L. Lazzeri, M. Mari. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 2015, 81: 8-14. http://dx.doi.org/10.1016/j.biocontrol.2014.10.004
[94] Mari M., C. Martini, M. Guidarelli, F. Neri. Postharvest biocontrol of Monilinia laxa, Monilinia fructicola and Monilinia fructigena on stone fruit by two Aureobasidium pullulans strains. Biol Control, 2012, 60(2): 132-140
[95] Ramin, A.A., R.K. Prange, P.G. Braun, J.M. Delong. Biocontrol of postharvest fungal apple decay at 20°C with Muscodor albus volatiles. Acta Hortic, 2008, 767: 329-336.DOI: https://doi.org/10.17660/ActaHortic.2008.767.34
[96] Mewa-Ngongang M., H.W.D. Plessis, S.K.O. Ntwampe, et al. The Use of Candida pyralidae and Pichia kluyveri to Control Spoilage Microorganisms of Raw Fruits Used for Beverage Production. Foods, 2019, 8(10): 454. DOI: https://doi.org/10.3390/foods8100454
[97] Wilson C.L., M. Wisniewski, A. El-Ghaouth, S. Droby, E. Chaltz. Commercialization of antagonistic yeasts for the biological control of postharvest diseases of fruits and vegetables. Journal of Industrial Microbiology and Biotechnology, 1996, 46: 237-242.
[98] Mishra D.S., A. Kumar, C.R. Prajapati, A.K. Singh, S.D. Sharma. Identification of compatible bacterial and fungal isolate and their effectiveness against plant disease. Journal of Environmental Biology, 2013, 34: 183-189.
[99] Agrios G.N. Plant pathology, 4th ed. Academic Press, New York, 1997: 703.
[100] Karabulut O.A., N. Baykal. Biological control of postharvest diseases of peaches and nectarines by yeasts. Journal of Phytopathology, 2003 151(3): 130-134.
[101] Spadaro, D., A. Ciavorella, D. Zhang, A. Garibaldi, M.L. Gullino. Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowiapulcherrima strain to be used as a biofungicide for postharvest disease control. Can. J. Microbiol., 2010, 56: 128-137.
[102] Wisniewski, M., C. Wilson. Biological control of postharvest diseases of fruits and vegetables: recent advances. Hort. Science, 1992, 27: 94-98.
[103] El-Neshawy S.M., C.L. Wilson.Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biological Technology, 1997, 10: 9-14.
[104] Lahlali R., M.H. Jijakli. Enhancement of the biocontrol agent Candida oleophila (strain O) survival and control efficiency under extreme conditions of water activity and relative. Biological Control, 2009, 51: 403-408
[105] Liu, J., M. Wisniewski, T. Artlip, Y. Sui, S. Droby and J. Norelli. The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biol. Technol. 2013, 85: 203-209. DOI: https://doi.org/10.1016/j.postharvbio.2013.06.007
[106] Usall J., N.Teixido, E. Fons and I. Vinas. Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. International Journal of Food Microbiology, 2000, 58: 83-92.
[107] Morales H., V. Sanchis, J. Usall, A.J. Ramos, S. Marín. Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. International Journal of Food Microbiology, 2008, 122 (1- 2): 61-67.
[108] Li, G., M. Chi, H. Chen, Y. Sui, Y. Li, Y. Liu et al. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition. Environ. Sci. Pollut. Res., 2016, 23: 2962-2967. DOI: https://doi.org/10.1007/s11356-015-5769-8
[109] Liu J., G. Li, Y. Sui. Optimization of Culture Medium Enhances Viable Biomass Production and Biocontrol Efficacy of the Antagonistic Yeast, Candida diversa. Front. Microbiol., 2017, 8: 2021. DOI: https://doi.org/10.3389/fmicb.2017.02021
[110] Mclaughlin R.J., C.L. Wilson, E. Chalutz, W. F. Kurtzman, S.F. Osman. Characterization and reclassification of yeasts used for biological control of postharvest diseases of fruits and vegetables. Applied and Environmental Microbiology, 1990, 56: 3583-3586.
[111] Alvarez A., R. Gelezoglo, G. Garmendia, M.L. González, A.P. Magnoli, E. Arrarte, S.Vero. Role of Antarctic yeast in biocontrol of Penicillium expansum and patulin reduction of apples. Environmental Sustainability, 2019: 1-7. https://doi.org/10.1007/s42398-019-00081-1
[112] Jijakli, M.H., P. Lepoivre. Biological control of postharvest Botrytis cinerea and Penicillium expansum on apples. IOBC/WPRS Bull, 1993, 16: 106- 110.
[113] Jijakli, M. H., C. Dickburt, D. De Clercq, P. Lepoivre. Application de Pichia anomala souche K, 1, 3-Glucanes et chlorure de calcium pour le contrôle des maladies de conservation des pommes en conditions proches de la pratique. In: 2ème Conférence Internationale sur les moyens alternatifs contre les organismes nuisibles aux végétaux. Palais du Nouveau siècle, Lille-France, 2002: 436-445.
[114] Lahlali, R., S. Massart, D. De Clercq, M. N. Serrhini, P. Creemers and M. H. Jijakli. Assessment of Pichia anomala (strain K) efficacy against blue mould of apples when applied pre-or post-harvest under laboratory conditions and in orchard trials. Eur. J. Plant Pathol. 2009, 123: 37-45.
[115] Lahlali, R., Y. Brostaux, M. H. Jijakli. Control of apple blue mold by the antagonistic yeast Pichia anomala strain K: Screening of UV protectants for preharvest application. Plant Dis., 2011, 95: 311- 316.
[116] Cao J., H. Zhang, Q. Yang and R. Ren. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. International Journal of Food Microbiology, 2013, 162(2): 167-173.
[117] Mahunu G. K., H. Zhang, Q. Yang, X. Zhang X., D. Li, Y. Zhou. Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biological Control., 2016, 92: 172-180.
[118] Zhang X., G. Zhang, P. Li, Q. Yang, K. Chen, L. Zhao, M. T. Apaliya, X. Gu, H. Zhang. Mechanisms of glycine betaine enhancing oxidative stress tolerance and biocontrol efficacy of Pichia caribbica against blue mold on apples. Biological Control, 2017, 108: 55-63.
[119] Zhao Y., J. Yin. Effects of Pichia guilliermondii and Hot Air Treatment on the Postharvest Preservation of Red Fuji Apple Quality Attributes. Journal of Food Protection, 2018, 81(2): 186-194.
[120] Mokhtarnejad L., H. R. Etebarian, M. R. Fazeli, H. Jamalifar. Evaluation of different formulations of potential biocontrol yeast isolates efficacy on apple blue mold at storage condition. Archives of Phytopathology and Plant Protection, 2011, 44(10): 970- 980.
[121] Fiori S., A. Fadda, S. Giobbe, E. Berardi, Q. Migheli. Pichia angusta is an effective biocontrol yeast against postharvest decay of apple fruit caused by Botrytis cinerea and Monilia fructicola. FEMS Yeast Research, 2008, 8(6): 961-963.
[122] El Hamouchi A., M. Bajji, D. Friel, B. Najimi, E.H. Achbani, S. El, Jaafari. Development of SCAR markers and a semi-selective medium for the quantification of strains Ach 1-1 and 1113-5, two Aureobasidium pullulans potential biocontrol agents. Postharvest Biol. Technol., 2008, 50: 216-223. DOI: https://doi.org/10.1016/j.postharvbio.2008.05.011
[123] Mounir, R., A. Durieux, E. Bodo et al. Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum Biotechnol. Lett., 2007, 29: 553-559. DOI: https://doi.org/10.1007/s10529-006-9269-2
[124] Zhang H., Wang L., Ma L., Dong Y., Jiang S., Xu B., Zheng X. Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 2009, 48: 79-83.
[125] Chand_Goyal T., R.A. Spotts. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with low dosage of thiabendazole. Postharvest Biological Technology, 1996, 7: 51-64.
[126] Chand-Goyal T., R. A. Spotts. Biological Control of Postharvest Diseases of Apple and Pear under Semi-commercial and Commercial Conditions Using Three Saprophytic Yeasts. Biological Control, 1997, 10(3): 199-206.
[127] Lima G., F. De Curtis, R. Castoria, V. De Cicco. Activity of the yeasts Cryptococcus laurentii and Rhodotorulaglutinis Against Post-harvest Rots on Different Fruits. Biocontrol Science and Technology, 1998, 8: 257-267.
[128] Li, R.P., H.Y. Zhang, W.M. Liu, X.D. Zheng. Biocontrol of postharvest gray and blue mold decay of apples with Rhodotorula mucilaginosa and possible mechanisms of action. Int. J. Food Microbiol., 2011, 146: 151-156.
[129] Yang Q., H. Zhang, X. Zhang, X. Zheng, J. Qian. Phytic Acid Enhances Biocontrol Activity of Rhodotorula mucilaginosa against Penicillium expansum Contamination and Patulin Production in Apples Front Microbiol. 2015, 6: 1296.
[130] Yu T., X.D. Zheng. Salicylic acid enhances biocontrol efficacy of theantagonist Cryptococcus laurentii in apple fruit. Journal of Plant Growth Regulation, 2006, 25: 166-174.
[131] Blum L.E.B., C.V.T. Amarante, R.M. Valdebenito-Sanhueza. Postharvest Application of the Yeast Cryptococcus laurentii Reduces Apple Rots. Proc. 5th Int. Postharvest Symp. Eds. F. Mencarelli and P. Tonutti. Acta Hort., 2005, 682, ISHS: 2109-2114.
[132] Fan Q., S.P. Tian. Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biological Technology, 2001, 21: 341-350.
[133] Spadaro D., A. Lorè, A. Garibaldi, M.L. Gullino. A new strain of Metschnikowia fructicola for postharvest control of Penicillium expansum and patulin accumulation on four cultivars of apple. Postharvest Biology and Technology, 2013, 75, 1-8. DOI: https://doi.org/10.1016/j.postharvbio.2012.08.001
[134] Li W., T. Zhou, T. Wu, X. Li. Saccharomyces cerevisiae YE-7 reduces the risk of apple blue mold disease by inhibiting the fungal incidence and patulin biosynthesis. Journal of Food Processing and preservation, 2017, 42(1): 1-7.
[135] Wang, Y.F., Y.H. Bao, D.H. Shen, W. Feng, T. Yu, J. Zhang, X.D. Zheng. Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell & Tallman. Int.J. Food Microbiol., 2008, 123: 234-239.
[136] Wang, Y.F., T. Yu, J.D Xia., D.S. Yu, J. Wang, X.D. Zheng. Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol. Control., 2010, 53: 178-182.
[137] Lu L., C. Ye, S. Guo, K. Sheng, L. Shao, T. Zhou, T. Yu, X. Zheng. Preharvest application of antagonistic yeast Rhodosporidiumpaludigenum induced resistance against postharvest diseases in mandarin orange. Biological Control, 2013, 67(2), 130-136. DOI: https://doi.org/10.1016/j.biocontrol.2013.07.016
[138] Zhu R., T. Yu, S. Guo, H. Hu, X. Zheng, A. Karlovsky. Effect of the Yeast Rhodosporidium paludigenum on Postharvest Decay and Patulin Accumulation in Apples and Pears. Journal of Food Protection, 2015, 78(1): 157-163. DOI: https://doi.org/10.4315/0362-028X.JFP-14-218
[139] Butt, T.M., C.W. Jackson, N. Magan. Fungi as Biocontrol Agents: Progress, Problems and Potential. 2001, CABI Publishing, UK, 384. DOI: http://dx.doi.org/10.1079/9780851993560.0000
[140] Harman G.E., C.P. Kubicek. Trichoderma and Gliocladium. Enzymes, biological control and commercial application. Taylor and Francis, London, 1998, 2: 393.
[141] Biswas K.K. Screening of isolates of Trichoderma harzianumRifai for their relative biocontrol efficacy against Fusarium oxysporum f. sp. Udum and Rhizoctonia solani Kühn. Annals of Plant Protection Sciences, 1999, 7(2): 125-130.
[142] Batta Y.A. Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion. Crop Protection, 2003, 23: 19-26.
[143] Yildiz C., A. Coskuntuna. Effects of treatment with Trichoderma harzianum and some plant activators on post-harvest decay of apple blue mold (Penicillium expansum Link.) and brown rot (Monilinia fructigena Honey ex Whetzel). Applied Ecology and environmental Research, 2019, 17(5): 12013- 12022.
[144] Batta, Y. A. Production and testing of biopesticide for control of postharvest Mold infections on fresh fruit apple and pear. Advances in Microbiologie, 2015, 5: 787-796.
[145] Cheng C.H., C.A. Yang, K.C. Peng. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology, 2012, 102(11): 1054-1063. DOI: https://doi.org/10.1094/PHYTO-11-11-0315
[146] Strobel G. Muscodor albus and its biological promise. J Ind Microbiol Biotechnol., 2006, 33(7): 514-522. DOI: https://doi.org/10.1007/s10295-006-0090-7
[147] Mercier, J., J. I. Jimenez. Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol. Tec., 2004, 31: 1-8, DOI: https://doi.org/10.1016/j.postharvbio.2003.08.004
[148] Frances J., A. Bonaterra, M.C. Moreno, J. Cabrefiga, E. Badosa, E. Montesinose. Pathogen aggressiveness and postharvest biocontrol efficiency in Pantoea agglomerans. Postharvest Biological Technology, 2006, 39: 299-307.
[149] Pal. K., M. B. Gardener. Biological control of plant pathogens. The Plant Health Instructor, 2006: 25. DOI: https://doi.org/10.1094/PHI-A-2006-1117-02
[150] Sreevidya M., S. Gopalakrishnan. Bacteria and actinomycetes as biocontrol agents for the control of fungal pathogens of chickpea and sorghum. In: International Conference on Plant Health Management for Food Security, Hyderabad, 2012, 28-30.
[151] Zhou, T., Chu, W. T. Liu, K. E. Shneider. Postharvest control of blue mold and grey mold on apples using isolates of diseases of peach with phyllosphere isolates of Pseudomonas syringae. Can. J. Plant Pathol., 2001, 23: 246-252.
[152] Northover, J., T. Zhou. Biological and fungicidal control of Rhizopus rot of peaches. Abstracts. 4th International conference on Postharvest science, Jerusalem, Israel. The International Society for Horticurtural Science (ISHS), Leuven, Belgium, 2000, 26-31: 63.
[153] Zhou T., J. Northover, K.E. Schneider, X. Lu. Interactions between Pseudomonas syringae MA-4 and cyprodinil in the control of blue mold and gray mold of apples. Can. J. Plant Pathol. 2002, 24: 154- 161. DOI: https://doi.org/10.1080/07060660309506990
[154] Nunes C., J. Usall, N. Teixido, I. Abadias, A. Asensio, I. Vinas. Biocontrol of postharvest decay using a new strain of Pseudomonas syringae CPA-5 in different cultivars of pome fruits. Agricultural and Food Science, 2007, 16(1): 56-65.
[155] Mikani A., H.R. Etebarian, P.L. Sholberg, D.T. Gorma, S. Stokes, A. Alizadeh. Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biological Technology, 2008, 48: 107-112.
[156] Etebarian1 H.-R., P.L.Sholberg, K.C. Eastwell, R.J. Sayler. Biological control of apple blue mold with Pseudomonas fluorescens. Can. J. Microbiol., 2005,51: 591-598.
[157] Stockwell, V.O., K. Johnson, E. Loper. Biological control of fire blight: understanding interactions among introduced and indigenous microbial communities. In Phyllosphere microbiology. Edited by S.E. Lindow, E.I. Hecht-Poinar, and V.J. Elliott. The American Phytopathological Society, St. Paul, Minn, 2002: 225-239.
[158] Wang Y., Z. Xu, P. Zhu, Y. Liu, Z. Zhang, Y. Mastuda, H. Toyoda, L. Xu. Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. Journal of Plant Pathology, 2010, 92(3): 645-652.
[159] Li Y., Li-R. Han, Y. Zhang et al. Biological Control of Apple Ring Rot on Fruit by Bacillus amyloliquefaciens 9001. Plant Pathol. J. 2013, 29(2): 168-73. DOI: http://dx.doi.org/10.5423/PPJ.SI.08.2012.0125
[160] Calvo, H., P. Marco, D. Blanco, R. Oria, M.E. Venturini. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol. 2017, 92(3): 645-652. DOI: https://doi.org/10.1016/j.fm.2016.11.004
[161] Lahlali R., W. Aksissou, N. Lyousfi, S. Ezrari, A. Blenzar, A. Tahiri, S. Ennahli, J. Hrustić, D. MacLean, S. Amiri, Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit, Microbial Pathogenesis, 2020, 139: 103914. DOI: https://doi.org/10.1016/j.micpath.2019.103914
[162] Trias R., L. Baneras, E. Montesinos, E. Badosa. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International, 2010, 11(4): 231-236.
[163] Kotan, R., N. Dikbas, H. Bostan. Biological controlof postharvest disease caused by Aspergillus flavus on stored lemon fruits. Af. J. Biotech., 2009, 8: 209-214.
[164] Sriram, S., S. R. Poornachanddra. Biological control of postharvest mango fruit rot caused by Colletotrichum gloeosporioides and Diplodia natalensis with Candida tropicalis and Alcaligenes feacalis. 2013, 66(4): 375-380. http://epubs.icar.org.in/ejournal/index.php/IPPJ/article/view/36015
[165] Jorjandi, M., G.H. ShahidiBonjar, A. Baghizadeh, G.R. SharifiSirchi, H. Massumi, F. Baniasadi, S. Aghighi, P. Rashid Farokhi. Biocontrol of Botrytis allii Munn the Causal Agent of Neck Rot, the Post Harvest Disease in Onion, by use of a New Iranian Isolate of Streptomyces. Am. J. Agri. & Biol. Sci., 2009, 4(1): 72-78.
[166] Eccleston, K. L., P. R. Brooks, D. İ. Kurtböke. Assessment of the Role of Local Strawberry Rhizosphere-Associated Streptomycetes on the Bacterially-Induced Growth and Botrytis cinerea Infection Resistance of the Fruit. Sustainability, 2010, 2(12): 3831-3845
[167] Li Z, X. Gao, Z. Kang, et al. Saccharothrix yanglingensis Strain Hhs.015 Is a Promising Biocontrol Agent on Apple Valsa Canker. Plant Dis., 2016, 100(2): 510-514. DOI: https://doi.org/10.1094/PDIS-02-15-0190-RE
[168] Soltanzadeh, M., M. SoltaniNejad, G. H. ShahidiBonjar. Application of Soil-borne Actinomycetes for Biological Control against Fusarium Wilt of Chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi. J Phytopathol, 2016, 164: 967-978.
[169] Droby S. Biological control of postharvest diseases of fruit and vegetables: difficulties and challenges. Phytopathology Poland, 2006, 39: 105-117.
[170] Calvo J., V. Calvente, M.E. DeOrellano, D. Benuzzi, M.I.S. DeTosetti. Improvement in the biocontrol of postharvest diseases of apples with the use of yeast mixture. BioControl, 2003, 48: 579- 593.
[171] Janisiewicz W.J., R.A. Saftner, W.S. Conway, K.S. Yoder. Control of blue mold decay of apple during commercial controlled atmosphere storage with yeast antagonists and sodium bicarbonate. Postharvest Biology and Technology, 2008, 49: 374-378.
[172] Calvo J., V. Calvente, M. E. Orellano, D. Benuzzi, M. I. Sanz. Control of Penicillium Expansum and Botrytis Cinerea on Apple Fruit by Mixtures of Bacteria and Yeast. Food and Bioprocess Technology, 2010, 3(5): 644-650.
[173] Conway W. S., W. J. Janisiewicz, B. Leverentz, R. A. Saftner, M.J. Camp. Control of blue mold of apple by combining controlled atmosphere, an antagonist mixture, and sodium bicarbonate. Postharvest Biology and Technology, 2007, 45: 326-332.
[174] Janisiewicz W.J., B. Bors. Development of a microbial community of bacterialand yeast antagonists to control wound-invading postharvest pathogens offruits. Applied and Environmental Microbiology, 1995, 61: 3261-3267.
[175] Zhimo V.Y., A. Biasi, A. Kumar, et al. Yeasts and Bacterial Consortia from Kefir Grains Are Effective Biocontrol Agents of Postharvest Diseases of Fruits. Microorganisms. 2020, 8(3): 428. DOI: https://doi.org/10.3390/microorganisms8030428
[176] Spadaro D., A. Garibaldi, M.L. Gullino. Control of Botrytis cinerea and Penicillium expansum on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and Technology, 2004, 33(2): 141-151.
[177] Conway W. S., B. Leverentz, W. J. Janisiewicz, A. B. Blodgett, R. A. Saftner, M. J. Camp. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biology and Technology, 2004, 34: 11- 20.
[178] Conway W.S., W.J. Janisiewicz, J.D. Klein, C.E. Sams. Strategy for combining heat treatment, calcium infiltration, and biological control to reduce postharvest decay of “Gala” apples. Postharvest Biology and Technology, 1999, 34: 700-704.
[179] Tian S., Q. Fan., X. Yong, H.B. Liu. Biocontrol efficacy of antagonist yeasts to gray mold and blue mold on apples and pears in controlled atmospheres. Plant Disease, 2002, 86: 848-853.
[180] Wallace R. L., D. L. Hirkala, L. M. Nelson. Pseudomonas fluorescens and low doses of chemicals inhibit postharvest decay of apples in commercial storage. Canadian Journal of Plant Pathology, 2019, 41(3): 355-365.
[181] Cai M.X., D. LiLi. Y. ShiXiang. Z. KaiFang. CaCl2 enhances the biocontrol efficacy of Candida oleophila against inoculated Penicillium expansum on postharvest apples. ShipinKexue. Food Science, 2019, 40(11): 220-226 ref.34.
[182] Gholamnejad J., H.R. Ebabarian. Effect of calcium chloride on thebiocontrol efficacy of two antagonistic yeasts against Penicillium expansumon apple fruit. Phytoparasitica, 2009, 37: 255-261.
[183] Conway,W.S., B. Leverentz, W.J. Janisiewicz, R.A. Saftner, M.J. Camp. Improving biocontrol using antagonist mixtures with heat and/or sodium bicarbonate to control postharvest decay of apple fruit. Postharvest Biol. Technol., 2005, 36: 235-244.
[184] Mari M., A. Carati. Use of Saccharomyces cerevisiae with ethanol in the biological control of grey mould of pome fruits. In: Proceedings ofCOST 914, 915 Joint Workshop, Non-conventional methods for the control of postharvest disease and microbiological spoilage. Bologna, Italy: CRIOF, University of Bologna, 1997: 85-91.
[185] Abdelhai M. H., F. N. Awad, Q. Yang, G. K. Mahunu, E. A. Godana, H. Zhang. Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism. Biological Control, 2019, 139: 104079. https://doi.org/10.1016/j.biocontrol.2019.104079
[186] Li C., H. Zhang, Q. Yang, M. G. Komla, X. Zhang, S. Zhu. Ascorbic Acid Enhances Oxidative Stress Tolerance and Biological Control Efficacy of Pichia caribbica against Postharvest Blue Mold Decay of Apples. J. Agric. Food Chem., 2014, 62(30): 7612- 7621.
[187] Yang Q., J. Diao, D. Solairaj, N. Ngea, G. Legrand, H. Zhang. Investigating possible mechanisms of Pichia caribbica induced with ascorbic acid against postharvest blue mold of apples. Biological Control., 2020(141): 104-129. DOI: https://doi.org/10.1016/j.biocontrol.2019.104129
[188] Yu T., L. Wang, Y.Yin, F. Feng, X. Zheng. Suppression of postharvest blue mold of apple fruit by Cryptococcus laurentii and N6-benzyladenine.Journal of the Science of Food and Agriculture, 2008, 88: 1266-1271.
[189] Yu T, D. Zheng, X. Li, X. Zheng. Biocontrol of Botrytis cinerea inapple fruit by Cryptococcus laurentiiand indole-3-acetic acid. Biological Control, 2008, 46: 171-177.
[190] Yu T., J. Chen, H. Lu, X. Zheng. Indol-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii.Phytopathology, 2009, 99: 258-264.
[191] Yu T., H.Y. Li, X.D. Zheng. Synergistic effect of chitosan and Cryptococcuslaurentiion inhibition of Penicillium expansum infections. InternationalJournalof Food Microbiology, 2007, 114: 261-266.
[192] Errampalli D., N.R. Brubacher. Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil Biological Control, 2006, 36(2006): 49- 56
[193] Lima, G., F. De Curtis, R. Castoria, V. De Cicco. Integrated control of postharvest diseases of “Annurca” apples by pre-storage application of yeasts and benomyl. In: Bertolini, P., Sijmons, P.C., Guerzoni, M.E., Serra, F. Non Conventional Methods for the Control of Postharvest Diseases and Microbiological Spoilage, Bologna, Italy. (Eds.), Proceedings of the joint COST 914-915 workshop, 1997: 121- 126.
[194] Tournas V.H., E.J. Katsoudas Effect of CaCl2 and Various Wild Yeasts From Plant Origin on Controlling Penicillium expansum Postharvest Decays in Golden Delicious Apples. Microbiology Insights, 2019, 12: 1-6. DOI: https://doi.org/10.1177/1178636119837643
[195] Janisiewicz W.J., Leverentz B., Conway W.S., Saftner R.A., Reed A.N., M.J. Camp. Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlledatmosphere conditions. Postharvest Biology and Technology, 2003, 29: 129-143.
[196] Janisiewicz W. J., W. S. Conway. Combining biological control with physical and chemical treatments to control fruit decay after harvest WojciechStewart. Postharvest Review, 2010, 1(3): 1-16.
[197] Zhang, H., G.K. Mahunu, R. Castoria, M.T. Apaliya, Q. Yang. Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends Food Sci. Technol., 2017, 69: 36-45.
[198] Zhang, H., G.K. Mahunu, R. Castoria, Q. Yang, M.T. Apaliya. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends Food Sci. Technol., 2018, 78: 180-187.
[199] Usall, J., R. Torres, N. Teixidó. Biological control of postharvest diseases on fruit: A suitable alternative? Current Opinion in Food Science, 2016, 11: 51-55.
[200] Li, H., C. Leifert. Development of resistance in Botryotinia fuckeliana (de Barry) Whetzel against the biological control agent Bacillus subtilis CL27. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz. 1994, 101: 414-418.
[201] Bardin M., S. Ajouz, M. Comby, M. Lopez-Ferber, B. Graillot, M. Siegwart, P.C. Nicot. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci., 2015, 6: 566. DOI: https://doi.org/10.3389/fpls.2015.00566
[202] Köhl J., R. Kolnaar, W.J. Ravensberg. Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Front Plant Sci., 2019, 10. Article 845. DOI: https://doi.org/10.3389/fpls.2019.00845
[203] Droby S., M. Wisniewski,. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol., 2018, 140: 107-112. DOI: https://doi.org/10.1016/J.POSTHARVBIO.2018.03.004
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2020 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.