-
29179
-
19041
-
3460
-
1474
-
1442
Photosynthetic Electron Transport in the Liverwort Conocephalum conicum (Marchantiales)
DOI:
https://doi.org/10.30564/jbr.v6i3.9222Abstract
Photosynthetic Electron Transport Rate (ETR) of Conocephalum conicum (Snakeskin Liverwort) was measured using PAM technology modelled using the Waiting-in-Line model. Plants were grown in greenhouses which had irregular sunflecks of full sunlight and in a culture room under LED lights. Plants grown in the greenhouse had photosynthetic maxima about 1/3 to ½ of sunlight, but very low optimum light requirements when grown in a culture room under LED lights. Chl a content was ≈ 241 mg Chl a m-2 (Chl b/a ≈ 0.216). Mid-morning (10:30 solar time): Ymax ≈ 0.629, irradiance ½ point for Yield ≈ 231 μmol photon m-2 s-1; Eopt ≈ 910 μmol photon m-2 s-1. ETRmax ≈ 266 μmol e- g-1 Chl a s-1, photosynthetic efficiency (Alpha, α0) ≈ 0.794 e- photon-1 g-1 Chl a. Photoinhibition was significant at high irradiances. Photosynthesis was markedly diurnal: Eopt and ETRmax were substantially lower in the afternoon. Integrating Gross photosynthesis (Pg) over the course of the day Pg ≈ 39.6 gC g-1 Chl a d-1 under full sunlight and ≈ 29.6 gC g-1 Chl a d-1 in the shaded greenhouse. On a projected surface area basis daily Pg is ≈ 7.14 gC m-2 d-1. The respiration rate was relatively low (≈ 2.23 μmol O2 g-1 Chl a s-1) so net photosynthesis is positive even at very low irradiances. Greenhouse gown plants had a conspicuous diurnal pattern of photosynthesis where optimum rates were found in midmorning and midday with a decrease in the afternoon. Plants grown under LED lights had a very low Eopt (≈90 μmol photon m-2 s-1) and ETRmax (≈ 40 μmol g-1 Chl a s-1). pH experiments indicate that it is capable of using HCO3- as a carbon source.
Keywords:
Snakeskin Liverwort; Conocephalum conicum; PAM; Pulse Amplitude Modulation Fluorometry; Optimum Irradiance (Eopt); Maximum Photosynthetic Electron Transport Rate (ETRmax); Carbon Concentrating Mechanism (CCM)References
[1] Löbs, N., Walter, D., Barbosa, C.G.G., et al., 2020. Microclimatic conditions and water content fluctuations experienced by epiphytic bryophytes in an Amazonian rain forest. Biogeosciences. 17(21), 5399–5416. DOI: https://doi.org/10.5194/bg-17-5399-2020
[2] Lee, G.E., Gradstein, S.R., 2021. Guide to the Genera of Liverworts and Hornworts of Malaysia. Hattori Botanical Laboratory and Kokusai Bunkensha: Tokyo, Japan. 236p.
[3] Perera-Castro, A.V., González-Rodríguez, Á.M., Fernández-Marín, B., 2022. When time is not of the essence: constraints to the carbon balance of bryophytes. Journal of Experimental Botany. 73(13), 4562–4575. DOI: https://doi.org/10.1093/jxb/erac104
[4] Raven, J.A., Colmer, T.D., 2016. Life at the boundary: photosynthesis at the soil–fluid interface. A synthesis focusing on mosses: Table 1. Journal of Experimental Botany. 67(6), 1613–1623. DOI: https://doi.org/10.1093/jxb/erw012
[5] Rout, G.R., Das, A.B., (Eds.), 2013. Molecular Stress Physiology of Plants. Springer India. Springer New Delhi: New Delhi, India. DOI: https://doi.org/10.1007/978-81-322-0807-5
[6] Ritchie, R.J., Sma-Air, S., 2023. Photosynthetic Electron Transport in a Tropical Moss Hyophila involuta. The Bryologist. 126(1), 52-68. DOI: https://doi.org/10.1639/0007-2745-126.1.052
[7] Ihle, C., Laasch, H., 1996. Inhibition of Photosystem II by UV‐B Radiation and the Conditions for Recovery in the Liverwort Conocephalum conicum Dum. Botanica Acta. 109(3), 199–205. DOI: https://doi.org/10.1111/j.1438-8677.1996.tb00564.x
[8] Marschall, M., Proctor, M.C.F., 2004. Are Bryophytes Shade Plants? Photosynthetic Light Responses and Proportions of Chlorophyll a, Chlorophyll b and Total Carotenoids. Annals of Botany. 94(4), 593–603. DOI: https://doi.org/10.1093/aob/mch178
[9] Ritchie, R.J., 2014. Photosynthesis in an Encrusting Lichen (Dirinaria picta(Sw.) Schaer.ex Clem., Physiaceae) and its Symbiont, Trebouxiasp., Using Pulse Amplitude Modulation Fluorometry. International Journal of Plant Sciences. 175(4), 450–466. DOI: https://doi.org/10.1086/675575
[10] Rao, K.R., Kumar, N.R., Reddy, A.N., 1979. Studies of Photosynthesis in Some Liverworts. The Bryologist. 82(2), 286. DOI: https://doi.org/10.2307/3242088
[11] Conde-Álvarez, R.M., Pérez-Rodríguez, E., Altamirano, M., et al., 2002. Photosynthetic performance and pigment content in the aquatic liverwort Riella helicophylla under natural solar irradiance and solar irradiance without ultraviolet light. Aquatic Botany. 73, 47–61. DOI: https://doi.org/10.1016/S0304-3770(02)00007-4
[12] Hao, J., Chu, L.M., 2021. Short-term detrimental impacts of increasing temperature and photosynthetically active radiation on the ecophysiology of selected bryophytes in Hong Kong, southern China. Global Ecology and Conservation. 31, e01868. DOI: https://doi.org/10.1016/j.gecco.2021.e01868
[13] Chen, C.-I., Lin, K.-H., Huang, M.-Y., et al., 2023. Photo-protection and photo-inhibition during light induction in Barbula indica and Conocephalum conicum under different light gradients. Photosynthesis Research. 159(2–3), 191–202. DOI: https://doi.org/10.1007/s11120-023-01030-0
[14] Shimakawa, G., Ishizaki, K., Tsukamoto, S., et al., 2017. The Liverwort, Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI. Plant Physiology. 173(3), 1636–1647. DOI: https://doi.org/10.1104/pp.16.01038
[15] Koide, E., Suetsugu, N., Iwano, M., et al., 2019. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. Plant and Cell Physiology. 61(3), 631–643. DOI: https://doi.org/10.1093/pcp/pcz232
[16] Davey, M.C., 1997. Effects of physical factors on photosynthesis by the Antarctic liverwort Marchantia berteroana. Polar Biology. 17(3), 219–227. DOI: https://doi.org/10.1007/s003000050125
[17] Marschall, M, Beckett, R.P., 2005. Photosynthetic responses in the inducible mechanisms of desiccation tolerance of a liverwort and a moss. Acta Biological Szegediensis. 49, 155–156.
[18] Vitt, D.H., Crandall-Stotler, B., Wood, A., 2014. Bryophytes: survival in a dry world through tolerance and avoidance. In: Rajakaruna, N., Boyd, R., Harris, T., (Eds.). Plant ecology and evolution in harsh environments. Nova Science: New York, NY, USA. pp. 267–295.
[19] Chotikarn, P., Pramneechote, P., Sinutok, S., 2022. Photosynthetic Responses of Freshwater Macrophytes to the Daily Light Cycle in Songkhla Lagoon. Plants. 11(21), 2806. DOI: https://doi.org/10.3390/plants11212806
[20] Frangedakis, E., Marron, A.O., Waller, M., et al., 2023. What can hornworts teach us? Frontiers in Plant Science. 14. DOI: https://doi.org/10.3389/fpls.2023.1108027
[21] Frangedakis, E., Shimamura, M., Villarreal, J.C., et al., 2020. The hornworts: morphology, evolution and development. New Phytologist. 229(2), 735–754. DOI: https://doi.org/10.1111/nph.16874
[22] Teeri, J. A., 1981. Stable Carbon Isotope Analysis of Mosses and Lichens Growing in Xeric and Moist Habitats. The Bryologist. 84(1), 82. DOI: https://doi.org/10.2307/3242982
[23] MABERLY, S. C., 1985. PHOTOSYNTHESIS BYFONTINALIS ANTIPYRETICA. New Phytologist. 100(2), 127–140. DOI: https://doi.org/10.1111/j.1469-8137.1985.tb02765.x
[24] PEN˜UELAS, J., 1985. HCO−3 as an Exogenous Carbon Source for Aquatic Bryophytes Fontinalis antipyretica and Fissidens grandifrons. Journal of Experimental Botany. 36(3), 441–448. DOI: https://doi.org/10.1093/jxb/36.3.441
[25] Smith, E.C., Griffiths, H., 2000. The role of carbonic anhydrase in photosynthesis and the activity of the carbon‐concentrating‐mechanism in bryophytes of the class Anthocerotae. New Phytologist. 145(1), 29–37. DOI: https://doi.org/10.1046/j.1469-8137.2000.00559.x
[26] Hanson, D., Andrews, T. J., Badger, M.R., 2002. Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Functional Plant Biology. 29(3), 407. DOI: https://doi.org/10.1071/pp01210
[27] Villarreal, J.C., Renner, S.S., 2012. Hornwort pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proceedings of the National Academy of Sciences. 109(46), 18873–18878. DOI: https://doi.org/10.1073/pnas.1213498109
[28] Morris, J.L., Puttick, M.N., Clark, J.W., et al., 2018. The timescale of early land plant evolution. Proceedings of the National Academy of Sciences. 115(10). DOI: https://doi.org/10.1073/pnas.1719588115
[29] BAIN, J.T., PROCTOR, M.C.F., 1980. THE REQUIREMENT OF AQUATIC BRYOPHYTES FOR FREE CO2 AS AN INORGANIC CARBON SOURCE: SOME EXPERIMENTAL EVIDENCE. New Phytologist. 86(4), 393–400. DOI: https://doi.org/10.1111/j.1469-8137.1980.tb01680.x
[30] Adams, D.G., Duggan, P.S., 2008. Cyanobacteria-bryophyte symbioses. Journal of Experimental Botany. 59, 1047–1058. DOI: https://doi.org/10.1093/job/ern005
[31] Glime, J.M., 2022. Bacterial effects on bryophytes. In 'Bryophyte Ecology Chapt. 19-1. Volume 2. Interactions.' Ebook 19-1-1 (Ed JM Glime) p. 94. (Sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 12 January 2023 and available at http://digitalcommons.mtu.edu/bryophyte-ecology/)
[32] Nichols, H.W., 1973. Growth Media - freshwater. In 'Handbook of Phycological methods: culture methods and growth measurements' (Ed JR Stein) Chapter 1 pp. 7 - 24. Cambridge University Press: Cambridge, UK.
[33] Jeffrey, S.W., Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and phytoplankton. Biochemie und Physiologie der Pflanzen. 167, 191--194. DOI: https://doi.org/10.1016/S0015-3796(17)30778-3
[34] Ritchie, R.J., 2006. Consistent Sets of Spectrophotometric Chlorophyll Equations for Acetone, Methanol and Ethanol Solvents. Photosynthesis Research. 89(1), 27–41. DOI: https://doi.org/10.1007/s11120-006-9065-9
[35] Ritchie, R.J., Sma-Air, S., Phongphattarawat, S., 2021. Using DMSO for chlorophyll spectroscopy. Journal of Applied Phycology. 33(4), 2047–2055. DOI: https://doi.org/10.1007/s10811-021-02438-8
[36] Ritchie, R.J., Runcie, J.W., 2014. A portable reflectance-absorptance-transmittance meter for photosynthetic work on vascular plant leaves. Photosynthetica. 52(4), 614–626. DOI: https://doi.org/10.1007/s11099-014-0069-y
[37] Potvin, C., Lechowicz, M.J., Tardif, S., 1990. The Statistical Analysis of Ecophysiological Response Curves Obtained from Experiments Involving Repeated Measures. Ecology. 71(4), 1389–1400. DOI: https://doi.org/10.2307/1938276
[38] Ralph, P.J., Gademann, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany. 82(3), 222–237. DOI: https://doi.org/10.1016/j.aquabot.2005.02.006
[39] Ritchie, R.J., 2008. Fitting light saturation curves measured using modulated fluorometry. Photosynthesis Research. 96(3), 201–215. DOI: https://doi.org/10.1007/s11120-008-9300-7
[40] Proctor, M.C.F., Bates, J.W., 2018. Chlorophyll-fluorescence measurements in bryophytes: evidence for three main types of light-curve response. Journal of Bryology. 40(1), 1–11. DOI: https://doi.org/10.1080/03736687.2017.1407280
[41] Serôdio, J., Lavaud, J., 2011. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence. Photosynthesis Research. 108(1), 61–76. DOI: https://doi.org/10.1007/s11120-011-9654-0
[42] Alboresi, A., Storti, M., Morosinotto, T., 2018. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. New Phytologist. 221(1), 105–109. DOI: https://doi.org/10.1111/nph.15372
[43] Quinnell, R., Howell, D., Ritchie, R.J., 2017. Photosynthesis of an epiphytic resurrection fern Davallia angustata (Wall .ex Hook. & Grev.). Australian Journal of Botany. 65(4), 348. DOI: https://doi.org/10.1071/bt16222
[44] Sma-Air, S., Ritchie, R.J., 2020. Photosynthesis in a Vanda sp orchid with Photosynthetic Roots. Journal of Plant Physiology. 251, 153187. DOI: https://doi.org/10.1016/j.jplph.2020.153187
[45] Ritchie, R.J., 2010. Modelling photosynthetic photon flux density and maximum potential gross photosynthesis. Photosynthetica. 48(4), 596–609. DOI: https://doi.org/10.1007/s11099-010-0077-5
[46] Larkum, A.W.D., Ritchie, R.J., Raven, J.A., 2018. Living off the Sun: chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica. 56(SPECIAL ISSUE), 11–43. DOI: https://doi.org/10.1007/s11099-018-0792-x
[47] Ritchie, R.J., Sma-Air, S., Limsathapornkul, N., et al., 2021. Photosynthetic electron transport rate (ETR) in the littoral herb Launaea sarmentosa known as mole crab in Thailand. Photosynthesis Research. 150(1–3), 327–341. DOI: https://doi.org/10.1007/s11120-021-00826-2
[48] Vollenweider, R.A., 1974. Primary production in aquatic environments. IBP Handbook No 12, pp. 54–59. Blackwell Scientific Publ.: London, UK. 242p.
[49] Golterman, H.L., Clymo, R.S., Ohnstad, M.A.M., 1978. Methods for physical and chemical analysis of fresh waters, 2nd ed. IBP Handbook No 8, pp. 58–64, 186–194. Blackwell Scientific Publ.: Oxford, UK. 231p.
[50] Millero, F.J., 1979. The thermodynamics of the carbonate system in seawater. Geochimica et Cosmochimica Acta. 43, 1651–1661. DOI: https://doi.org/10.1016/0016-7037(79)90184-4
[51] Garcia, H.E., Gordon, L.I., 1992. Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography. 37(6), 1307–1312. DOI: https://doi.org/10.4319/lo.1992.37.6.1307
[52] Zar, J.H., 2014. Biostatistical Analysis, 5th ed. Pearson New International Edition Pearson: Edinburgh Gate, Harlow, UK. 761p.
[53] Wang, Z., Liu, X., Bao, W., 2015. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species. Oecologia. 180(2), 359–369. DOI: https://doi.org/10.1007/s00442-015-3484-2
[54] Apichatmeta, K., Sudsiri, C.J., Ritchie, R.J., 2017. Photosynthesis of Oil Palm (Elaeis guineensis). Scientia Horticulturae. 214, 34–40. DOI: https://doi.org/10.1016/j.scienta.2016.11.013
[55] Ritchie, R.J., Bunthawin, S., 2010. Photosynthesis in Pineapple (Ananas comosus comosus [L.] Merr) Measured Using PAM (Pulse Amplitude Modulation) Fluorometry. Tropical Plant Biology. 3(4), 193–203. DOI: https://doi.org/10.1007/s12042-010-9057-y
[56] Ritchie, R.J., 2012. Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) Using Pulse Amplitude Modulation Fluorometry. International Journal of Plant Sciences. 173(2), 124–136. DOI: https://doi.org/10.1086/663168
[57] Ritchie, R.J., Heemboo, M., 2021. Trentepohlia sp., a terrestrial chlorophyte growing on galvanised iron lamp posts. Phycologia. 60(1), 48–61. DOI: https://doi.org/10.1080/00318884.2020.1851008
[58] Ritchie, R.J., Sma-Air, S., 2022. Photosynthesis of an endolithic Chlorococcum alga (Chlorophyta, Chlorococcaceae) from travertine calcium carbonate rocks of a tropical limestone Spring. Applied Phycology. 3(1), 1–15. DOI: https://doi.org/10.1080/26388081.2021.2023631
[59] Nikolić, N., Zotz, G., Bader, M.Y., 2024. Modelling the carbon balance in bryophytes and lichens: Presentation of PoiCarb 1.0. a new model for explaining distribution patterns and predicting climate‐change effects. American Journal of Botany. 111(1). DOI: https://doi.org/10.1002/ajb2.16266
[60] Sello, S., Meneghesso, A., Alboresi, A., et al., 2019. Plant biodiversity and regulation of photosynthesis in the natural environment. Planta. 249(4), 1217–1228. DOI: https://doi.org/10.1007/s00425-018-03077-z
[61] Franco, A.C., Herzog, B., Hubner, C., et al., 1999. Diurnal changes in chlorophyll a fluorescence, CO2-exchange and organic acid decarboxylation in the tropical CAM tree Clusia hilariana. Tree Physiology. 19(10), 635–644. DOI: https://doi.org/10.1093/treephys/19.10.635
[62] Waite, M., Sack, L., 2009. How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytologist. 185(1), 156–172. DOI: https://doi.org/10.1111/j.1469-8137.2009.03061.x
[63] Wu, H.-Y., Qiao, M.-Y., Zhang, Y.-J., et al., 2022. Photosynthetic mechanism of maize yield under fluctuating light environments in the field. Plant Physiology. 191(2), 957–973. DOI: https://doi.org/10.1093/plphys/kiac542
[64] Steeman Nielsen, E., 1947. Photosynthesis of aquatic plants with special reference to carbon sources(Dansk botanisk archiv). Munksgaard: Denmark. Volume 12, pp. 5–71.
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2024 Author(s)

This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.