A Systematic Overview of Underwater Wireless Sensor Networks: Applications, Challenge and Research Perspectives


  • Fethi Demim

    Guidance and Navigation Laboratory, Ecole Militaire Polytechnique, Bordj El Bahri, 16046, Algeria

  • Rekia Bouguessa

    Energy Systems Laboratory, Ecole Militaire Polytechnique, Bordj El Bahri, Algiers, 16046, Algeria

  • Abdenebi Rouigueb

    Artificial Intelligence and Virtual Reality Laboratory, Ecole Militaire Polytechnique, Bordj El Bahri, Algiers, 16046, Algeria

  • Abdelkrim Nemra

    Guidance and Navigation Laboratory, Ecole Militaire Polytechnique, Bordj El Bahri, 16046, Algeria


Received: 15 February 2023 | Revised: 12 April 2023 | Accepted: 20 April 2023 | Published Online: 6 May 2023


Underwater Wireless Sensor Networks (UWSNs) are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology. However, UWSNs present challenges in processing, energy, and memory storage due to the use of acoustic waves for communication, which results in long delays, significant power consumption, limited bandwidth, and packet loss. This paper provides a comprehensive review of the latest advancements in UWSNs, including essential services, common platforms, critical elements, and components such as localization algorithms, communication, synchronization, security, mobility, and applications. Despite significant progress, reliable and flexible solutions are needed to meet the evolving requirements of UWSNs. The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements, establishing a standard platform and service criteria, using a taxonomy to determine critical elements, and emphasizing important unresolved issues.


Wireless sensor networks, Ad-hoc networks, Internet of Things, Localization algorithms, Node mobility, Security mechanisms, Energy-efficient communication


[1] Stojanovic, M., 1996. Recent advances in high-speed underwater acoustic communications. IEEE Journal of Oceanic Engineering. 21(2), 125-136. Available from: http://users.isr.ist.utl.pt/~jpg/proj/phitom/refs/stojanovic_apr96_joe_MergePDFs.pdf

[2] Sozer, E., Stojanovic, M., Proakis, J.G., 1999. Design and simulation of an underwater acoustic local area network. Proceedings Opnetwork. 99, 65-72. Available from: https://www.semanticscholar.org/paper/Design-and-Simulation-of-an-Underwater-Acoustic Sozer-Stojanovic/cb61efbdc764edfc310bfd8ac8940843bff59d14

[3] Stojanovic, M., Preisig, J., 2009. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine. 47(1), 84-89. DOI: https://doi.org/10.1109/MCOM.2009.4752682.

[4] Chen, K., Ma, M., Cheng, E., et al., 2014. A survey on MAC protocols for underwater wireless sensor networks. IEEE Communications Surveys & Tutorials. 16(3), 1433-1447. DOI: https://doi.org/10.1109/SURV.2014.013014.00032

[5] Akyildiz, I.F., Pompili, D., Melodia, T., 2005. Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks. 3(3), 257-279. DOI: https://doi.org/10.1016/j.adhoc.2005.01.004

[6] Climent, S., Sanchez, A., Capella, J.V., et al., 2014. Underwater acoustic wireless sensor networks: Advances and future trends in physical, MAC and routing layers. Sensors. 14(1), 795-833. DOI: https://doi.org/10.3390/s140100795

[7] Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al., 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials. 17(4), 2347-2376. DOI: https://doi.org/10.1109/COMST.2015.2444095

[8] Perrig, A., Szewczyk, R., Tygar, J.D., et al., 2002. SPINS: Security protocols for sensor networks. Wireless Networks. 8(5), 521-534. Available from: https://people.eecs.berkeley.edu/~tygar/papers/SPINS/SPINS_wine-journal.pdf

[9] Fleury, E., Simplot-Ryl, D., 2009. Réseaux de Capteurs: Théorie et Modélisation (French) [Sensors Networks: Theory and Modelling]. Auteurs : FLEURY Éric, SIMPLOT-RYL David. pp. 1-364. Available from: https://www.lavoisier.fr/livre/physique/reseaux-de-capteurs-theorie-et-/fleury/descriptif-9782746221222

[10] Webster, S.E., 2010. Decentralized single-beacon acoustic navigation: Combined communication and navigation for underwater vehicles [PhD thesis]. Baltimore: Johns Hopkins University. Available from: https://apps.dtic.mil/sti/pdfs/ADA528005.pdf

[11] Souiki, S., 2015. Protocoles de Routage Performants Dédies aux Réseaux de Capteurs sans Fil sous l’eau (French) [Efficient Routing Protocols Dedicated to Underwater Wireless Sensor Networks] [PhD thesis]. Algerie: Université Abou Bekr Belkaid de Tlemcen. Available from: https://www.theses-algerie.com/1180796419097579/these-de-doctorat/universite-abou-bekr-belkaid-tlemcen/protocoles-de-routage-performants-dedies-aux-reseaux-de-capteurs-sans-fil-sous-leau

[12] Jahan, K., Rao, S.K., 2020. Implementation of underwater target tracking techniques for Gaussian and non-Gaussian environments. Computers & Electrical Engineering. 87, 106783. DOI: https://doi.org/10.1016/j.compeleceng.2020.106783

[13] Ribas, D., Ridao, P., Tardós, J.D., et al., 2008. Underwater SLAM in man-made structured environments. Journal of Field Robotics. 25(11-12), 898-921. DOI: https://doi.org/10.1002/rob.20249

[14] Demim, F., Nemra, A., Abdelkadri, H., et al., 2019. NH∞-SLAM algorithm for autonomous underwater vehicle. Lecture Notes in Advances in Computing Systems and Applications Book Series. Springer, Cham.: Berlin. pp. 193-203.

[15] Demim, F., Nemra, A., Louadj, K., et al., 2017. An adaptive SVSF-SLAM algorithm to improve the success and solving the UGVs cooperation problem. Journal of Experimental & Theoretical Artificial Intelligence. 30(3), 389-414. DOI: https://doi.org/10.1080/0952813X.2017.1409282

[16] Demim, F., Rouigueb, A., Nemra, A., et al., 2022. A new filtering strategy for target tracking application using the second form of smooth variable structure filter. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 236(6), 1224-1249. DOI: https://doi.org/10.1177/09596518221079485

[17] Demim, F., Benmansour, S., Abdelkrim, N., et al., 2022. Simultaneous localisation and mapping for autonomous underwater vehicle using a combined smooth variable structure filter and extended kalman filter. Journal of Experimental & Theoretical Artificial Intelligence. 34(4), 621-650. DOI: https://doi.org/10.1080/0952813X.2021.1908430

[18] Cheng, Y., Liu, Q., Wang, J., et al., 2018. Distributed fault detection for wireless sensor networks based on support vector regression. Wireless Communications and Mobile Computing. 4349795. DOI: https://doi.org/10.1155/2018/4349795

[19] Zhang, Z., Mehmood, A., Shu, L., et al., 2018. A survey on fault diagnosis in wireless sensor networks. IEEE Access. 6, 11349-11364. DOI: https://doi.org/10.1109/ACCESS.2018.2794519

[20] Ez-Zaidi, A., Rakrak, S., 2016. A comparative study of target tracking approaches in wireless sensor networks. Journal of Sensors. 3270659. DOI: https://doi.org/10.1155/2016/3270659

[21] Kou, K., Li, B., Ding, L., et al., 2023. A distributed underwater multi-target tracking algorithm based on two-layer particle filter. Journal of Marine Science and Engineering. 11(4), 858. DOI: https://doi.org/10.3390/jmse11040858

[22] Park, M.K., Rodoplu, V., 2007. UWAN-MAC: An energy-efficient MAC protocol for underwater acoustic wireless sensor networks. IEEE Journal of Oceanic Engineering. 32(3), 710-720. DOI: https://doi.org/10.1109/JOE.2007.899277

[23] Han, G., Jiang, J., Shu, L., et al., 2012. Localization algorithms of underwater wireless sensor networks: A survey. Sensors. 12(2), 2026-2061. DOI: https://doi.org/10.3390/s120202026

[24] Pranitha, B., Anjaneyulu, L., 2011. Analysis of underwater acoustic communication system using equalization technique for ISI reduction. Procedia Computer Science. 167, 1128-1138. Available from: https://www.sciencedirect.com/science/article/pii/S1877050920308814

[25] Kim, Y.G., Kim, D.G., Kim, K., et al., 2022. An efficient compression method of underwater acoustic sensor signals for underwater surveillance. Sensors. 22(9), 3415. DOI: https://doi.org/10.3390/s22093415

[26] Partan, J., Kurose, J., Levine, B.N., 2007. A survey of practical issues in underwater networks. ACM SIGMOBILE Mobile Computing and Communications Review. 11(4), 23-33. DOI: https://doi.org/10.1145/1347364.1347372

[27] Alsulami, M., Elfouly, R., Ammar, R. (editors), 2014. Underwater wireless sensor networks: A review. Proceedings of the 11th International Conference on Sensor Networks. p. 202-214. DOI: https://doi.org/10.5220/0010970700003118

[28] Heidemann, J., Stojanovic, M., Zorzi, M., 2012. Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 370(1958), 158-175. DOI: https://doi.org/10.1098/rsta.2011.0214

[29] Ali, M., Khan, A., Mahmood, H., et al., 2019. Cooperative, reliable, and stability-aware routing for underwater wireless sensor networks. International Journal of Distributed Sensor Networks. 15(6), 1-11. DOI: https://doi.org/10.1177/1550147719854249

[30] Khalid, M., Ullah, Z., Ahmad, N., et al., 2017. A survey of routing issues and associated protocols in underwater wireless sensor networks. Journal of Sensors. 7539751. DOI: https://doi.org/10.1155/2017/7539751

[31] Ismail, A.S., Wang, X., Hawbani, A., et al., 2022. Routing protocols classification for underwater wireless sensor networks based on localization and mobility. Wireless Networks. 28(2), 797-826. DOI: https://doi.org/10.1007/s11276-021-02880-z

[32] Goh, J.H., Shaw, A., Al-Shamma’a, A.I., 2009. Underwater wireless communication system. Journal of Physics: Conference Series. 178, 012029. DOI: https://doi.org/10.1088/1742-6596/178/1/012029

[33] Yan, H., Ma, T., Pan, C., et al. (editors), 2022. Statistical analysis of time-varying channel for underwater acoustic communication and network. Proceedings of the International Conference on Frontiers of Information Technology (FIT); 2021 Dec 13-14; Islamabad. New York: IEEE. DOI: https://doi.org/10.1109/FIT53504.2021.00020

[34] Goyal, N., Dave, M., Verma, A.K., 2019. Protocol stack of underwater wireless sensor network: Classical approaches and new trends. Wireless Personal Communications. 104, 995-1022. DOI: https://doi.org/10.1007/s11277-018-6064-z

[35] Kashif Manzoor, M., Amir Latif, R.M., Haq, I., et al., 2022. An energy-efficient routing protocol via angle-based flooding zone in underwater wireless sensor networks. International Journal of Intelligent Systems and Applications in Engineering. 10(2s), 116-123. Available from: https://www.ijisae.org/index.php/IJISAE/article/view/2371/955

[36] Celik, A., Romdhane, I., Kaddoum, G., et al., 2023. A top-down survey on optical wireless communications for the Internet of Things. IEEE Communications Surveys & Tutorials. 25(1), 1-45. DOI: https://doi.org/10.1109/COMST.2022.3220504

[37] Chehri, A., Farjow, W., Mouftah, H.T. (editors), et al., 2011. Design of wireless sensor network for mine safety monitoring. Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering; 2011 May 8-11; Niagara Falls. New York: IEEE. DOI: https://doi.org/10.1109/CCECE.2011.6030722

[38] Zhao, C., Liu, F., Hai, X., 2013. An application of wireless sensor networks in underground coal mine. International Journal of Future Generation Communication and Networking. 6(5), 117-126. DOI: http://dx.doi.org/10.14257/ijfgcn.2013.6.5.11

[39] Saeed, N., Celik, A., Al-Naffouri, T.Y., et al., 2017. Energy harvesting hybrid acoustic-optical underwater wireless sensor networks localization. Sensors. 18(1), 51. DOI: https://doi.org/10.3390/s18010051

[40] Fattah, S., Gani, A., Ahmedy, I., et al., 2020. A survey on underwater wireless sensor networks: Requirements, taxonomy, recent advances, and open research challenges. Sensors. 20(18), 5393. DOI: https://doi.org/10.3390/s20185393

[41] Luo, J., Chen, Y., Wu, M., et al., 2021. A survey of routing protocols for underwater wireless sensor networks. IEEE Communications Surveys & Tutorials. 23(1), 137-160. DOI: https://doi.org/10.1109/COMST.2020.3048190

[42] Xie, P., Cui, J.H., 2007. An FEC-based reliable data transport protocol for underwater sensor networks. Proceedings of the 16th IEEE International Conference on Computer Communications and Networks; 2007 Aug 13-16; Honolulu. New York: IEEE. DOI: https://doi.org/10.1109/ICCCN.2007.4317907

[43] Wang, H., Wang, S., Zhang, E., 2016. An improved data transport protocol for underwater acoustic sensor networks. Proceedings of the OCEANS MTS/IEEE Monterey; 2016 Sep 19-23; Monterey. New York: IEEE. DOI: https://doi.org/10.1109/OCEANS.2016.7761436

[44] Prasan, U.D., Murugappan, S., 2012. Underwater sensor networks: Architecture, research challenges and potential applications. International Journal of Engineering Research and Applications. 2(2), 251-256. Available from: https://www.ijera.com/papers/Vol2_issue2/AP22251256.pdf

[45] Draz, U., Ali, T., Yasin, S., et al. (editors), 2018. A parametric performance evaluation of SMDBRP and AEDGRP routing protocols in underwater wireless sensor network for data transmission. Proceedings of the IEEE International Conference on Advancements in Computational Sciences; 2018 Feb 19-21; Lahore. New York: IEEE. DOI: https://doi.org/10.1109/ICACS.2018.8333484

[46] Li, N., Martínez, J.F., Meneses Chaus, J.M., et al., 2016. A survey on underwater acoustic sensor network routing protocols. Sensors. 16(3), 414. DOI: https://doi.org/10.3390/s16030414

[47] Ali, M.F., Jayakody, D.N.K., Chursin, Y.A., et al., 2020. Recent advances and future directions on underwater wireless communications. Archives of Computational Methods in Engineering. 27, 1379-1412. DOI: https://doi.org/10.1007/s11831-019-09354-8

[48] Jiang, P., Dong, L., Pang, X. (editors), 2016. Deployment strategy of wireless sensor networks: A survey. Proceedings of the 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer; 2016 Jun 11-12; Tianjin. New York: IEEE. DOI: https://doi.org/10.2991/mmebc-16.2016.286

[49] Khan, A., Javaid, N., Ali, I., et al., 2017. An energy efficient interference-aware routing protocol for underwater WSNs. KSII Transactions on Internet and Information Systems. 11(10), 4844-4864. DOI: https://doi.org/10.3837/tiis.2017.10.009

[50] Wei, L., Han, J., 2020. Topology control algorithm of underwater sensor network based on potential-game and optimal rigid sub-graph. IEEE Access. 8, 177481-177494. DOI: https://doi.org/10.1109/ACCESS.2020.3024742

[51] Jiang, S., 2018. On securing underwater acoustic networks: A survey. IEEE Communications Surveys & Tutorials. 21(1), 729-752. DOI: https://doi.org/10.1109/COMST.2018.2864127

[52] Ayaz, M., Baig, I., Abdullah, A., et al., 2011. A survey on routing techniques in underwater wireless sensor networks. Journal of Network and Computer Applications. 34(6), 1908-1927. DOI: https://doi.org/10.1016/j.jnca.2011.06.009

[53] Ma, Y., Hu, Y.H. (editors), 2009. ML source localization theory in an underwater wireless sensor array network. 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing; 2009 Sep 24-26; Beijing. New York: IEEE. p. 1-4. DOI: https://doi.org/10.1109/WICOM.2009.5303840

[54] Dini, G., Duca, A.L., 2012. A secure communication suite for underwater acoustic sensor networks. Sensors. 12(11), 15133-15158. DOI: https://doi.org/10.3390/s121115133

[55] SSharif-Yazd, M., Khosravi, M.R., Moghimi, M.K., 2017. A survey on underwater acoustic sensor networks: Perspectives on protocol design for signaling, MAC and routing. Journal of Computer and Communications. 5, 12-23. DOI: https://doi.org/10.4236/jcc.2017.55002

[56] Felemban, E., Shaikh, F.K., Qureshi, U.M., et al., 2015. Underwater sensor network applications: A comprehensive survey. International Journal of Distributed Sensor Networks. 11(11), 896832. DOI: https://doi.org/10.1155/2015/896832

[57] Bhalla, M., Pandey, N., Kumar, B. (editors), 2015. Security protocols for wireless sensor networks. Proceedings of the International Conference on Green Computing and Internet of Things; 2015 Oct 8-10; Greater Noida. p. 1005-1009. Available from: https://cibtrc.com/wp-content/uploads/2019/12/bhalla2015.pdf

[58] Fouchal, S., Mansouri, D., Mokdad, L., et al., 2015. Recursive-clustering-based approach for denial of service (DoS) attacks in wireless sensors networks. International Journal of Communication Systems. 28(2), 309-324. DOI: https://doi.org/10.1002/dac.2670

[59] Fengzhong, Q.U., Shiyuan, W., Zhihui, W.U., et al., 2016. A survey of ranging algorithms and localization schemes in underwater acoustic sensor network. China Communications. 13(3), 66-81. DOI: https://doi.org/10.1109/CC.2016.7445503

[60] Li, H., He, Y., Cheng, X., et al., 2015. Security and privacy in localization for underwater sensor networks. IEEE Communications Magazine. 53(11), 56-62. DOI: https://doi.org/10.1109/MCOM.2015.7321972

[61] Hahn, M.J., 2005. Undersea navigation via a distributed acoustic communication network [Master’s thesis]. Annapolis: Naval Postgraduate School Monterey CA: United States Naval Academy. Available from: https://apps.dtic.mil/sti/citations/ADA435873

[62] Sandhiyaa, S., Gomathy, C., 2022. Performance analysis of routing protocol in underwater wireless sensor network. Proceedings of the IEEE International Conference on Sustainable Computing and Data Communication Systems; 2022 Apr 7-9; Erode. New York: IEEE. DOI: https://doi.org/10.1109/ICSCDS53736.2022.9760816

[63] Gavrić, Ž., Simić, D., 2018. Overview of DOS attacks on wireless sensor networks and experimental results for simulation of interference attacks. Ingeniería e Investigación. 38(1), 130-138. DOI: http://dx.doi.org/10.15446/ing.investig.v38n1.65453

[64] Liou, E.C., Kao, C.C., Chang, C.H., et al. (editors), 2018. Internet of underwater things: Challenges and routing protocols. Proceedings of IEEE International Conference on Applied System Invention; 2018 Apr 13-17; Chiba. New York: IEEE. p. 1171-1174. DOI: http://dx.doi.org/10.1109/ICASI.2018.8394494

[65] Celik, A., Saeed, N., Shihada, B., et al., 2020. A software-defined opto-acoustic network architecture for internet of underwater things. IEEE Communications Magazine. 58(4), 88-94. DOI: http://dx.doi.org/10.1109/MCOM.001.1900593

[66] de Oliveira Filho, J.I., Trichili, A., Ooi, B.S., et al., 2020. Toward self-powered internet of underwater things devices. IEEE Communications Magazine. 58(1), 68-73. DOI: http://dx.doi.org/10.1109/MCOM.001.1900413

[67] Cong, Y., Yang, G., Wei, Z., et al. (editors), 2010. Security in underwater sensor network. 2010 International Conference on Communications and Mobile Computing; 2010 Apr 12-14; Shenzhen. New York: IEEE. p. 162-168. DOI: http://dx.doi.org/10.1109/CMC.2010.18

[68] Souza, E., Wong, H.C., Cunha, Í., et al. (editors), 2013. End-to-end authentication in under-water sensor networks. 2013 IEEE Symposium on Computers and Communications (ISCC); 2013 Jul 7-10; Split. New York: IEEE. p. 000299-000304. DOI: https://doi.org/10.1109/ISCC.2013.6754963

[69] Jiang, S., 2018. Wireless networking principles: From terrestrial to underwater acoustic. Springer: Berlin. DOI: https://doi.org/10.1007/978-981-10-7775-3

[70] Goyal, N., Dave, M., Verma, A.K., 2017. Trust model for cluster head validation in underwater wireless sensor networks. Underwater Technology. 34(3), 106-113. DOI: https://doi.org/10.3723/ut.34.107

[71] Han, G., Liu, L., Jiang, J., et al., 2016. A collaborative secure localization algorithm based on trust model in underwater wireless sensor networks. Sensors. 16(2), 229. DOI: https://doi.org/10.3390/s16020229

[72] Lee, J., Shah, B., Pau, G., et al., 2018. Real-time communication in wireless sensor networks. Wireless Communications and Mobile Computing. 9612631. DOI: https://doi.org/10.1155/2018/9612631

[73] Peng, C., Du, X., 2017. SDBR: A secure depth-based anonymous routing protocol in underwater acoustic networks. International Journal of Performability Engineering. 13(5), 731-741. DOI: https://doi.org/10.23940/ijpe.17.05.p16.731741

[74] Saeed, N., Nam, H., Al-Naffouri, T.Y., et al., 2019. A state-of-the-art survey on multidimensional scaling-based localization techniques. IEEE Communications Surveys & Tutorials. 21(4), 3565-3583. DOI: https://doi.org/10.1109/COMST.2019.2921972

[75] Bian, T., Venkatesan, R., Li, C. (editors), 2010. An improved localization method using error probability distribution for underwater sensor networks. 2010 IEEE International Conference on Communications; 2010 May 23-27; Cape Town. New York: IEEE. p. 1-6. DOI: https://doi.org/10.1109/ICC.2010.5501953

[76] Yang, G., Dai, L., Wei, Z., 2018. Challenges, threats, security issues and new trends of underwater wireless sensor networks. Sensors. 18(11), 3907. DOI: https://doi.org/10.3390/s18113907

[77] Cui, J., Feng, D., Li, Y., et al., 2020. Research on simultaneous localization and mapping for AUV by an improved method: Variance reduction FastSLAM with simulated annealing. Defence Technology. 16(3), 651-661. DOI: https://doi.org/10.1016/j.dt.2019.10.004

[78] Cheng, W., Teymorian, A.Y., Ma, L., et al. (editors), 2008. Underwater localization in sparse 3D acoustic sensor networks. IEEE INFOCOM 2008—The 27th Conference on Computer Communications; 2008 Apr 13-18; Phoenix. New York: IEEE. p. 236-240. DOI: https://doi.org/10.1109/INFOCOM.2008.56

[79] Isbitiren, G., Akan, O.B., 2011. Three-dimensional underwater target tracking with acoustic sensor networks. IEEE Transactions on Vehicular Technology. 60(8), 3897-3906. DOI: https://doi.org/10.1109/TVT.2011.2163538

[80] Blidberg, D.R., Jalbert, J., Ageev, M.D., 1997. Some Design Considerations for a Solar Powered Auv; Energy Management and Its Impact On Operational Characteristics [Internet]. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d3bb7c97b0b1c587a300808e82ef1a759e52640c

[81] Ameer, P.M., Jacob, L., 2013. Underwater localization using stochastic proximity embedding and multi-dimensional scaling. Wireless Networks. 19, 1679-1690. Available from: https://link.springer.com/article/10.1007/s11276-013-0563-3

[82] Mirza, D., Schurgers, C. (editors), 2007. Collaborative localization for fleets of underwater drifters. OCEANS 2007; 2007 Sep 29-Oct 4; Vancouver. New York: IEEE. p. 1-6. DOI: https://doi.org/10.1109/OCEANS.2007.4449391

[83] Chandrasekhar, V., Seah, W. (editors), 2006. An area localization scheme for underwater sensor networks. OCEANS 2006-Asia Pacific; 2006 May 16-19; Singapore. New York: IEEE. p. 1-8. DOI: https://doi.org/10.1109/OCEANSAP.2006.4393969

[84] Zhou, Y., Gu, B.J., Chen, K., et al., 2009. An range-free localization scheme for large scale underwater wireless sensor networks. Journal of Shanghai Jiaotong University (Science). 14, 562-568. Available from: https://link.springer.com/article/10.1007/s12204-009-0562-9

[85] Erol-Kantarci, M., Oktug, S., Vieira, L., et al., 2011. Performance evaluation of distributed localization techniques for mobile underwater acoustic sensor networks. Ad Hoc Networks. 9(1), 61-72. DOI: https://doi.org/10.1016/j.adhoc.2010.05.002

[86] Othman, A.K. (editor), 2008. GPS-less localization protocol for underwater acoustic networks. 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN’08); 2008 May 5-7; Surabaya. New York: IEEE. p. 1-6. DOI: https://doi.org/10.1109/WOCN.2008.4542532

[87] Bian, T., Venkatesan, R., Li, C. (editors), 2009. Design and evaluation of a new localization scheme for underwater acoustic sensor networks. GLOBECOM 2009-2009 IEEE Global Telecommunications Conference; 2009 Nov 30-Dec 4; Honolulu. New York: IEEE. p. 1-5. DOI: https://doi.org/10.1109/GLOCOM.2009.5425366

[88] Liu, B., Chen, H., Zhong, Z., et al., 2010. Asymmetrical round trip based synchronization-free localization in large-scale underwater sensor networks. IEEE Transactions on Wireless Communications. 9(11), 3532-3542. DOI: https://doi.org/10.1109/TWC.2010.090210.100146

[89] Callmer, J., Skoglund, M., Gustafsson, F., 2010. Silent localization of underwater sensors using magnetometers. Eurasip Journal on Advances in Signal Processing. 10, 1-8. DOI: http://dx.doi.org/10.1155/2010/709318

[90] Erol, M., Vieira, L.F.M., Gerla, M. (editors), 2007. AUV-aided localization for underwater sensor networks. International Conference on Wireless Algorithms, Systems and Applications (WASA 2007); 2007 Aug 1-3; Chicago. New York: IEEE. p. 44-54. DOI: https://doi.org/10.1109/WASA.2007.34

[91] Lee, S., Kim, K., 2012. Localization with a mobile beacon in underwater sensor networks. Sensors. 12(5), 5486-5501. DOI: https://doi.org/10.3390/s120505486

[92] Isik, M.T., Akan, O.B., 2009. A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications. 8(9), 4457-4463. DOI: https://doi.org/10.1109/TWC.2009.081628

[93] Luo, H., Guo, Z., Dong, W., et al., 2010. LDB: Localization with directional beacons for sparse 3D underwater acoustic sensor networks. Journal of Networks. 5(1), 28-38. DOI: https://doi.org/10.4304/jnw.5.1.28-38

[94] Ameer, P.M., Jacob, L., 2010. Localization using ray tracing for underwater acoustic sensor networks. IEEE Communications Letters. 14(10), 930-932. DOI: https://doi.org/10.1109/LCOMM.2010.090810.101237

[95] Porter, M.B., Bucker, H.P., 1987. Gaussian beam tracing for computing ocean acoustic fields. The Journal of the Acoustical Society of America. 82(4), 1349-1359. DOI: https://doi.org/10.1121/1.395269

[96] Toky, A., Singh, R.P., Das, S., 2020. Localization schemes for underwater acoustic sensor networks-a review. Computer Science Review. 37, 100241. DOI: https://doi.org/10.1016/j.cosrev.2020.100241

[97] Poursheikhali, S., Zamiri-Jafarian, H. (editors), 2015. TDOA based target localization in inhomogenous underwater wireless sensor network. 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE); 2015 Oct 20-29; Mashhad. New York: IEEE. p. 1-6. DOI: https://doi.org/10.1109/ICCKE.2015.7365873

[98] Yang, K.W., Guo, Y.B., Wei, D.W., et al., 2010. MFALM: An active localization method for dynamic underwater wireless sensor networks. Computer Science. 37(1), 114-117. Available from: https://www.jsjkx.com/EN/Y2010/V37/I1/114

[99] Luo, J., Fan, L., Wu, S., et al., 2017. Research on localization algorithms based on acoustic communication for underwater sensor networks. Sensors. 18(1), 67. DOI: https://doi.org/10.3390/s18010067

[100] Cheng, X., Thaeler, A., Xue, G., et al. (editors), 2004. TPS: A time-based positioning scheme for outdoor wireless sensor networks. IEEE INFOCOM 2004; 2004 Mar 7-11; Hong Kong. New York: IEEE. p. 2685-2696. DOI: https://doi.org/10.1109/INFCOM.2004.1354687

[101] Fu, B., Zhang, F., Ito, M., et al., 2008. Development of a new underwater positioning system based on sensor network. Artificial Life and Robotics. 13(1), 45-49. DOI: https://doi.org/10.1007/s10015-008-0583-8

[102] Zhou, Z., Cui, J.H., Zhou, S., 2010. Efficient localization for large-scale underwater sensor networks. Ad Hoc Networks. 8(3), 267-279. DOI: https://doi.org/10.1016/j.adhoc.2009.08.005

[103] Gao, I.X., Zhang, F., Ito, M. (editors), 2012. Underwater acoustic positioning system based on propagation loss and sensor network. 2012 Oceans-Yeosu; 2012 May 21-24; Yeosu. New York: IEEE. p. 1-4. DOI: https://doi.org/10.1109/OCEANS-Yeosu.2012.6263441

[104] Emokpae, L., Younis, M. (editors), 2011. Surface based anchor-free localization algorithm for underwater sensor networks. 2011 IEEE International Conference on Communications (ICC); 2011 Jul 28; Kyoto. New York: IEEE. p. 1-5. DOI: https://doi.org/10.1109/icc.2011.5963364

[105] Zhou, Z., Peng, Z., Cui, J.H., et al., 2010. Scalable localization with mobility prediction for underwater sensor networks. IEEE Transactions on Mobile Computing. 10(3), 335-348. DOI: https://doi.org/10.1109/TMC.2010.158

[106] Guo, Y., Kang, X., Han, Q., et al., 2019. A localization algorithm for underwater wireless sensor networks based on ranging correction and inertial coordination. KSII Transactions on Internet and Information Systems (TIIS). 13(10), 4971-4987. DOI: https://doi.org/10.3837/tiis.2019.10.009

[107] Cheng, X., Shu, H., Liang, Q., et al., 2008. Silent positioning in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology. 57(3), 1756-1766. DOI: https://doi.org/10.1109/TVT.2007.912142

[108] Zhou, M., Zhong, Z., Fang, X., 2013. Sensor-target geometry for hybrid bearing/range underwater localization. IFAC Proceedings Volumes. 46(20), 724-729. DOI: https://doi.org/10.3182/20130902-3-CN-3020.00111

[109] Luo, J., Fan, L., 2017. A two-phase time synchronization-free localization algorithm for underwater sensor networks. Sensors. 17(4), 726. DOI: https://doi.org/10.3390/s17040726

[110] Vaghefi, R.M., Buehrer, R.M. (editors), 2013. Asynchronous time-of-arrival-based source localization. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing; 2013 Oct 21; Vancouver. New York: IEEE. p. 4086-4090. DOI: https://doi.org/10.1109/ICASSP.2013.6638427


How to Cite

Demim, F., Bouguessa, R., Rouigueb, A., & Nemra, A. (2023). A Systematic Overview of Underwater Wireless Sensor Networks: Applications, Challenge and Research Perspectives. Journal of Computer Science Research, 5(2), 52–77. https://doi.org/10.30564/jcsr.v5i2.5478





Download data is not yet available.