Review of the Ochsenius Theory for Salt Generation in the Transylvanian Basin, Romania

Authors

  • Unger Z. ELTE University, Geographical Department in Szombathely, Hungary; Oil & Gas Development Central LTD, Budapest, Hungary
  • LeClair D. Oil & Gas Development Central LTD, Budapest, Hungary

DOI:

https://doi.org/10.30564/agger.v4i1.4307

Abstract

This short study aims to highlight contradictions in Ochsenius’s model for the basin-wide salt generation (Kara-Bogas bay desiccation). Without claiming completeness, and through numerous records cited from the specific literature, we attempt to point at crucial incoherencies in the classical evaporitic model. In our presupposition, these might have led our ancestors to conclude that basin-wide salt generation needs theoretically well-based models. This is emphatically true for the Transylvanian Basin,Romania.The selected records are basic for the specific topic. We checked their validity by logical reasoning and by literature references.As for salt generation, the classical Ochsenius model has been upheld for the generation of evaporates even though it has been known that there are records denying the exclusivity of the evaporation model. It has also been proven that deep-sea salt exists, yet terminology is reluctant to follow the new discoveries. If non-evaporitic salt generation exists, it entails that huge salt deposits may exist, which are not remnants of a desiccation process.These cannot be considered as part of the classical theory of evaporation.Former researchers left important but neglected records, which should have updated the model of Ochsenius by now. Well-documented historical observation uncovered some contradictions in the salt generation of the Transylvanian Basin, Romania.Hereby we list 10 important contradictions,which may reveal that the well-known theory of Ochsenius (i.e. drying of Kara Bogaz bay) ought to be challenged for the Transylvanian Basin.

Keywords:

Sedimentology, Salt generation, Stratigraphy, Historical records

References

[1] Warren, J., 2016. Evaporites, In book: Encyclopedia of Geochemistry.DOI: https://doi.org/10.1007/978-3-319-39193-9_100-1

[2] Warren, J., 2010. Evaporites through time: Tectonic,climatic and eustatic controls in marine and nonmarine deposits, Earth-Science Reviews 98. pp. 217-268.DOI: https://doi.org/10.1016/j.earscirev.2009.11.004

[3] von Den Belt, F.J.G., de Boer, P.L., 2007. A shallow-basin model for 'saline giants' based on isostasy-driven subsidence, Spec. Publ. Int. Assoc. Sedimentol. 38, 241-252. ISBN:978-1-444-30441-1.

[4] Hovland, M., Rueslåtten, H.G., Johnsen, H.K.,Kvamme, B., Kuznetsova, T., 2006. Salt formation associated with sub-surface boiling and supercritical water, Marine and Petroleum Geology 23. pp. 855-869.DOI: https://doi.org/10.1016/j.marpetgeo.2006.07.002

[5] Unger, Z., LeClair, D., 2018. Salt and Methane Generation Initiated by Membrane Polarisation. Earth Sciences. 7(2), 53-57.DOI: https://doi.org/10.11648/j.earth.20180702.12

[6] Krézsek, Cs., Bally, W.A., 2006. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thust belt: Insights in gravitational salt tectonics, Marine and Petroleum Geology 23. pp. 405-442.DOI: https://doi.org/10.1016/j.marpetgeo.2006.03.003

[7] Krézsek, Cs., Filipescu, S., Silye, L., Mațenco, L.,Doust, H., 2010. Miocene facies associations and sedimentary evolution of the Southern Transylvanian Basin (Romania): Implications for hydrocarbon exploration, Marine and Petroleum Geology 27. pp.191-214.DOI: https://doi.org/10.1016/j.marpetgeo.2009.07.009

[8] Mațenco, L., Krézsek, Cs., Merten, S., Schmid, S.,Cloething S., Andriessen P., 2010.Characteristics of collisional orogens with low topographic build-up: an example from the Carpathians, Terra Nova. 22,155-165.DOI: https://doi.org/10.1111/j.1365-3121.2010.00931.x

[9] Unger, Z., LeClair, D., May 19-20 2016. Is the Badenian Salt Deposit in Transylvania a Secondary Source of Methane? (abs.): AAPG European Regional Conference and Exhibition, Abstract Book,Bucharest,Romania. pp. 112.

[10] Miklós, A., 2017. Foreign travellers’ notes about the Transylvanian and Maramureș salt mines (18-19.century) Transylvanian Museum Society, People and Contexts. 14, 427. (In Hungarian) ISBN 978-606-739-072-8.

[11] Mikeš, D., 2013. “Theoretic Geology - The gap between empiric and mathematic geology”. In:Mathematical Geosciences Special Issue - Theory, Methods and Applications. Ed. by S.M. Ernst, V. Liesenberg,and F. Shahzad. Inkaba yeAfrica contribution 85.Chap. 1, pp. 7-25. ISBN 978-3-86012-453-6.

[12] Mikeš, D., 2010. Geophysical Research Abstracts Vol. 12, Bibcode: EGU2010-6614-1, 2010 EGU General Assembly. https://ui.adsabs.harvard.edu/abs/2010EGUGA..12.6614M.

[13] Papp, K., 1911. Potasium salt exploration in Hungary. Geological Bulletin of the Hungarian Geological Society, Budapest. vol. XLI/41. pp. 1-19.

[14] Tiliță, M., Lenkey, L., Mațenco, L., Horváth, F.,Dinu, C., 2006. Neogene evolution of Transylvania basin: insights derived from (2D steady-state) thermal modelling. Geophysical Research Abstracts 8,08874. SRef-ID: 1607-7962/gra/EGU06-A-08874.

[15] Tămaş. D.T., Schléder, Zs., Krézsek, Cs., Man, S.,Filipescu S., 2018. Understanding salt in orogenic settings: The evolution of ideas in the Romanian Carpathians, AAPG Bulletin. 102(6),941-958.DOI: https://doi.org/10.1306/0913171615517088

[16] Böckh, J., 1911. Notes about the anticlines with gas reserves from the Transylvanian Basin, Geological Bulletin of the Hungarian Geological Society, Budapest. vol. XLI. pp. 235-239.

[17] Paraschiv, D., 1979. Romanian Oil and Gas Fields,Institutul de Geologie și Geofizică, Studii Tehnice și Economice/Geological and Geophysical Institute/Technical and Economic Studies, vol. 13. Seria A,Bucharest. pp. 382.

[18] Nemeșan, M., 2007. Romgaz. Present and Perspectives. Energy in Centre and Eastern Europe Forum,Bucharest. 20-22.

[19] Arrhenius, S., Lachman, R., 2003. The physical-chemical conditions relating to the formation of salt deposits and their application to geologic problems. In: Milestones in Geosciences Ed.by Dr.Wolf-Christian Dullo. pp. 62-74.DOI: https://doi.org/10.1007/s00531-002-0270-2

[20] Blaney, H. F., Muckel D. C., 1955. Evaporation and evapotranspiration investigations in the San Francisco Bay Area, Eos Trans. AGU, 36(5), 813–820. DOI: http://doi.org/10.1029/TR036i005p00813

[21] Rusz, O., 2014. The salt concentration changes of Corund creek, Abstract volume of EMF-BKF Odorheiu-Secuiesc conference. pp. 305-306. (In Hungarian) ISSN-1842-9440.

[22] Warren, 2021. Evaporite Deposits, In: Encyclopedia of Geology, 2nd edition, Elsevier Ltd. pp. 945-977.DOI: https://doi.org/10.1016/B978-0-08-102908-4.00165-X

[23] Stoica, C., Gherasie, I., 1981. Salt, Potasium- and Magnesium-salt from Romania. Editura Tehnica,Bucuresti. pp. 248.(In Romanian)

[24] Pauca, M., 1967. Contribution to the Miocene salt genesis from Romania. Annual Report of the Geological Institute, LIII(2)(1965-1966). pp. 159-184.(In Romanian)

[25] de Leeuw, A., Bukowski, K., Krijgsman, W., Kuiper, K.F., 2010. Age of the Badenian salinity crisis;impact of Miocene climate variability on the circum-Mediterranean region, Geology. 38(8),715-718.DOI: https://doi.org/10.1130/G30982.1

[26] de Leeuw, A., Filipescu, S., Maţenco, L., Krijgsman, W., Kuiper, K., Stoica, M., 2013. Paleomagnetic and chronostratigraphic constraints on the Middle to Late Miocene evolution of the Transylvanian Basin (Romania): Implications for Central Paratethys stratigraphy and emplacement of the Tisza-Dacia plate,Global and Planetary Change 103. pp 82-98.DOI: https://doi.org/10.1016/j.gloplacha.2012.04.008

[27] Szakács, A., Pécskay, Z., Silye, L., Balogh, K., Vlad,D., Fülöp, A., 2012. On the age of the Dej Tuff, Transylvanian Basin (Romania), Geologica Carpathica.63(2), 139-148.DOI: https://doi.org/10.2478/v10096-012-0011-9

[28] Gautier, F., Clauzon, G., Suc, J.P., Cravatte, J., Violanti, D., 1994. Age et durée de la crise de salinité messinienne C.R. Acad. Sci. Paris. 318, 1103-1109.

[29] Bojar, H.P., Antoniade, C., Barbu, V., Bojar, A.V.,2020. A New Preparation Method of Microfauna from Gypsum: Micropaleontological Association from the Middle Miocene Badenian Gypsum Deposits of Paratethys, Geosciences. 10(158) 1-14.DOI: https://doi.org/10.3390/geosciences10050158

[30] Filipescu, R., Filipescu, S., 2015. New data on the Early - Middle Badenian transition in the NW Transylvanian Basin (Romania) revealed by the planktonic foraminifera assemblages, Studia UBB Geologia.59(1-2), 39-44.DOI: http://dx.doi.org/10.5038/1937-8602.59.1.3

[31] Krézsek, Cs., Filipescu, S., 2005. Middle to late Miocene sequence stratigraphy of the Transylvanian Basin (Romania). Tectonophysics. 410, 437-463.

[32] Wanek, F., 2008. The history of discovering natural gas reserves in the Transylvanian Basin from the death of Ferenc Nyulas to its re-discovery in 1908,Technical Review, 44. Historia Scientiarum - 5. Special Issue in History of Sciences). pp. 3-16.

[33] Harris, G.D., 1908. Rock salt, its origin, geological occurrences, and economic importance in the state of Louisiana; Louisiana Geol. Survey Bulletin. 7, 173.

Downloads

How to Cite

Z., U., & D., L. (2022). Review of the Ochsenius Theory for Salt Generation in the Transylvanian Basin, Romania. Advances in Geological and Geotechnical Engineering Research, 4(1), 28–36. https://doi.org/10.30564/agger.v4i1.4307

Issue

Article Type

Review