Petrogenesis and Rb-Sr Isotopic Characteristics of Paleo-Mesoproterozoic Mirgarani Granite Sonbhadra Uttar Pradesh India: Geodynamics Implication for Supercontinent Cycle

Authors

  • A. P. Dhurandhar Orion Geohytech India, G-10 Bramhaputra Apartment, Aakar Nagar, Katol Road, Nagpur, 440013, India
  • Suresh Khirwal Atomic Minerals Directorate for Exploration & Research, Jamshedpur, 831014, India
  • D.V. L.N. Sastry Atomic Minerals Directorate for Exploration & Research, Hyderabad, 009140, India

DOI:

https://doi.org/10.30564/agger.v5i1.5261
Received: 17 November 2022 | Revised: 15 January 2023 | Accepted: 29 January 2023 | Published Online: 21 February 2023

Abstract

The Rb-Sr whole-rock isochron, age 1636 ± 66 Ma of Mirgarani granite, is the one of the oldest granite dated in the northwestern part of the Chhotanagpur Granite Gneiss Complex (CGGC). The initial Sr ratio is 0.715 ± 0.012 (MSWD = 0.11), showing an S-type affinity. The Mirgarani granite has intruded the migmatite complex of the Dudhi Group and forms the Mirgarani formation comparable to the granites of the Bihar Mica Belt around Hazaribagh (1590 ± 30 Ma). The present studies have established the chronostratigraphy of the Dudhi Group and adjoining areas in CGGC. Petro graphic and geochemical studies revealed that the granite is enriched in Rb (271 ppm), Pb (77 ppm), Th (25 ppm), and U (33 ppm) and depleted in Sr (95 ppm), Nb (16 ppm), Ba (399 ppm) and Zr (143 ppm) contents as compared to the normal granite. The Mirgarani granite is a peraluminous (A/CNK = 1.23), high potassic (K2O 6.42%), Calc-Alkalic to Alkali-Calcic {(Na2O + K2O) - CaO = 6.29} S-Type granite, a feature supported by the presence of modal garnet and normative corundum (2.68%). The Mirgarani granite is considered to have been formed by the anatexis of a crustal sedimentary protolith at a depth of approximately 30 km with temperatures ranging from 685-700 °C during the Columbian - Nuna Supercontinent.

Keywords:

Miragrani granite; Petrogenesis; Isochron dating; Radiogenic heat; Dudhi group; CGGC; Palaeo-Mesoproterozoic; Supercontinents

References

[1] Dayal, B., 1979. A conceptual approach for the possibility of Tin mineralisation associated with acid magmatism in parts of Mirzapur district Uttar Pradesh Proc. workshop (IGCP-26) in Mineralisation associated with acid magmatism (MAWAM 1979). Geological Survey of India. 13, 111-116.

[2] Iqabaluddin, Moghani, A., 1981. Stratigraphy of the Bijawar Group in Sun Valley, Mirzapur district, UP and Sidhi district, MP. Geological Survey of India. 3, 81-93.

[3] Chaubey, V.D., Gupta, A., 1990. The Son-valley greenstone belt-some aspects of Precambrian shield geology, Peninsular India. Journal of the Geological Society of India. 35, 229-305.

[4] Nair, K.K.K., Jain, S.C., Yedekar, D.B., 1995. Stratigraphy Structure and Geochemistry of the Maha koshal Greenstone belt. Memoir Geological Society of India. 31, 403-432.

[5] Yadav, N.L., 1978. Petrochemistry of Pre-Cambri an rocks of Dudhi area, District Mirzapur UP in Recent research in Geology. Hindustan Publication Corporation: Delhi. pp. 447-465.

[6] Bhattacharya, A.K., Gorikhan, R.A., Khajanchi, B.N., et al., 1992. Uranium mineralization hosted by migmatite-mobilizates and breccia zones in the northwestern part of Chhotanagpur granite gneiss complex, Rihand valley, Sonbhadra district Uttar Pradesh. Indian Journal of Geology. 64(3), 259-275.

[7] Mahadevan, T., 2002. Geology of Bihar and Jharkhand. GSI Publications. 2(1).

[8] Acharyya, S.K., 2003. The nature of mesoprotero zoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Research. 6, 197-214.

[9] Sarkar, S.N., 1980. Precambrian stratigraphy and geochronology of Peninsular India: A review. Indian Journal of Earth Sciences. 7, 12-26.

[10] Sarkar, A.N., 1982. Precambrian tectonic evolution of Eastern India: A model of converging microplates. Tectonophysics. 86, 363-397.

[11] Sarkar, A.N., 1988. Tectonic evolution of the Cho tanagpur Plateau and the Gondwana Basins in Eastern India: An interpretation based on supra-sub duction geological processes. Mukhopadhaya, D. (editor), precambrian of the Eastern Indian shield. Geological Society of India Memoir. 8, 127-148.

[12] Chatterjee, N., Banerjee, M., Bhattacharya, A., et al., 2010. Monazite chronology, metamorphism–anatexis and tectonic relevance of the mid-Neopro terozoic Eastern Indian Tectonic Zone. Precambrian Research. 179, 99-120. DOI: https://doi.org/10.1016/j.precamres.2010.02.013.

[13] Chatterjee, N., Ghose, N.C., 2011. Extensive early neoproterozoic high-grade metamorphism in North chotanagpur gneissic complex of the central Indian Tectonic Zone. Gondwana Research. 20(2-3), 362-379. DOI: https://doi.org/10.1016/j.gr.2010.12.003.

[14] Mohanty, S., 2012. Spatio-temporal evolution of the Satpura Mountain Belt of India: A comparison with the Capricorn Orogen of Western Australia and implication for evolution of the supercontinent Columbia. Geoscience Frontiers. 3(3), 241-267. DOI: https://doi.org/10.1016/j.gsf.2011.10.005.

[15] Sanyal, S., Sengupta, P., 2012. Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of the East Indian Shield: Current status. Geological Society, London, Special Publications. 365(1), 117-145. DOI: https://doi.org/10.1144/sp365.7.

[16] Mukherjee, S., Dey, A., Sanyal, S., et al., 2019. Proterozoic crustal evolution of the Chhotanagpur granite gneissic complex, Jharkhand-Bihar-West Bengal, India: Current status and future prospect tectonics and structural geology in Indian Context Soumyajit Mukherjee (editor). Springer International Publication: New York. pp. 7-54.

[17] Auden, J.B., 1933. Vindhyan sedimentation in the sun valley, Mirzapur district. Geological Survey of India. 62(2), 141-250.

[18] Chaubey, V.D., 1970. The Narmada-Son line thrust, the great boundary fault along the southern margin of Vindhyan basin, Central India, West Commemoration volume. Today and Tomorrow’s Printers and Publishers, Faridabad: Delhi. pp. 420-438.

[19] Gupta, A., 1982. Interpretation of Landsat imagery of a part of the Son Valley and its correlation with Bouguer gravity and airborne magnetic anomaly data. Journal of the Geological Society of India. 23, 136-145.

[20] Dhurandhar, A.P., Saxena, D.N., 1996. Integrated airborne gamma-ray spectral and satellite data analysis for U and REE mineralisation-A case study from north Sagobandh area, District Sonbhadra, Uttar Pradesh, India. Journal of the Indian Society of Remote Sensing. 27(1), 43-57. DOI: https://doi.org/10.1007/bf02990774.

[21] Dhurandhar, A.P., Rajagopalan, V., Raminaidu, Ch., et al., 2003. Petrological and geochemical char acterisation of uraniferous pegmatoid leucosomes of Jura, District Sonbhadra, Uttar Pradesh, India. Gond. Geol. Magz. SPL. 7, 279-295.

[22] Dhurandhar, A.P., Latha, A., Krishna, V., 2005. Geochronology and Petrochemistry of the Dubha Granite, Sonbhadra District, Uttar Pradesh. Journal of the Geological Society of India. 65(4), 459-467.

[23] Dhurandhar, A.P., Srivastava, S.K., Sastry, D.V.L.N., et al., 2006. Geochemistry and geochronology of metabasic intrusions in Kirwil-Sagobandh Area, North-western Chhotanagpur Terrain. Indian Journal of Petroleum Geology. 78(1-4), 119-134.

[24] Hansoti, S.K., Deshmukh, A.N., 1990. Structural controls of uranium mineralisation in Proterozoic rocks of Sendur Tatapani area, Sarguja district MadhyaPradesh. Precambians of Central India. Geological Survey of India Special Publication. 28, 676-695.

[25] Streckiessens, A., 1976. To each plutonic rock its proper name. Earth Science Reviews. 12, 1-33.

[26] Ludwing, K.R., 2012. ISOPLOT 3.75 A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication. 5, 75.

[27] Pandey, B.K., Gupta, J.N., Sarma, K.J., et al., 1997. Sm-Nd, Pb-Pb, and Rb-Sr geochronology and petrogenesis of mafic dyke swarm of Mahbubnagar, south India: Implications for Paleoproterozoic crustal evolution of the eastern Dharwar craton. Precambrian Research. 84, 181-196.

[28] Wedepohl, K.H., 1969. Handbook of geochemistry. New York: Springer-Verlog. 1, 236.

[29] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical composition of the continental crust as revealed by studies in east China. Geochimica et Cosmo chimica Acta. 62, 1959-1975.

[30] Thompson, R.N., 1982. Magmatism of the British Tertiary Volcanic Province. Scottish Journal of Geology. 18(1), 49-107. DOI: https://doi.org/10.1144/sjg18010049.

[31] McDonough, W.F., Sun, S.S., 1995. The composition of the Earth. Chemical Geology. 120, 223-253.

[32] Maniar, P.D., Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin. 101, 635-643.

[33] Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The interpretation of igneous rocks. Allen and Unwin: London. pp. 450. DOI: https://doi.org/10.1007/978-94-017-3373-1.

[34] Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Castro, A., Fernandez, C., Vigneresse, J. L. (editors), Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications. 168, 55-75.

[35] Condie, K.C., 1973. Archean magmatism and crustal thickening. Geological Society of America Bulletin. 84, 2981-2991. DOI: https://doi.org/10.1130/0016-7606(1973)84%3C2981:AMACT%3E2.0.CO;2

[36] Wilson, M., 1989. Igneous petrogenesis a global tectonic approach. London: Unwin Hyman. pp. 126, 466.

[37] Jung, C., Jung, S., Hellebrand, E., et al., 2009. Trace element constraints on mid-crustal partial melting processes—a garnet ion probe study from polyphase migmatites (Damara orogen, Namibia). Transactions of the Royal Society of Edinburgh Earth Sciences. 100(1-2), 205-218.

[38] Chappell, B.W., White, A.J.R., 1974. Two contrasting granite types. Pacific Geology. 8, 173-174.

[39] Chappell, B.W., White, A.J.R., 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences. 48, 489-499.

[40] White, A.J.R., Chappell, B.W., 1977. Ultrameta morphism and granitoid genesis. Tectonophysics. 43(1-2), 7-22. DOI: https://doi.org/10.1016/0040-1951(77)90003-8.

[41] White, A.J.R., Chappell, B.W., 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeast Australia. Roddick, J.A., (editor), Circum-Pacific Plutonic terranes. Geological Society of America, Memoir. 159, 21-34. DOI: https://doi.org/10.1130/MEM159-p21.

[42] White, A.J.R., Chappell, B.W., 1988. Some supra crustal (S-type) granites of the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh. Earth Sciences. 79, 169-181.

[43] Calvin, F.M., 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? Journal of Geology. 93, 673-689.

[44] El Bouseily, A.M., El Sokkary, A.A., 1975. The relation of Rb, Ba, and Sr in granitic rocks. Chemical Geology. 16, 207-219.

[45] Streckeisen, A.L., LeMaitre, R.W., 1979. Chemical approximation to modal QAPF classification of the igneous rocks. Neus Jahrbuch fur Mineralogie. 136, 169-206.

[46] Shaw, D.M., 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica Et Cosmochimica Acta. 32, 573-601.

[47] Rossi, J.N., Toselli, A.J., Basei, M.A., et al., 2011. Geochemical indicators of metalliferous fertility in the Carboniferous San Blas pluton, Sierra de Vel asco, Argentina. Geological Society, London, Special Publications. 350(1), 175-186. https://www.lyellcollection.org/doi/abs/10.1144/SP350.10.

[48] Clarke, D.B., 1992. The mineralogy of peraluminous granites: A review. Canadian Mineralogist. 19, 3-17.

[49] Rollinson, H.R., 1993. Using geochemical data: Evaluation, presentation, interpretation. 1st edition. Longman: London. pp. 384.

[50] Janoušek, V., Finger, F., Roberts, M.P., et al., 2004. Deciphering petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Earth & Environmental Science Transactions of the Royal Society of Edinburgh. 95, 141-159. DOI: https://doi.org/10.1017/S0263593300000985.

[51] Sylvester, P.J., 1998. Post-Collisional strongly per aluminous granites. Lithos. 45(1-4), 29-44.

[52] Dietrich, V., Gansser, A., 1981. The leucogranites of the Bhutan Himalaya. Schweizer Mineralogisch Petrographische Mitteilungen. 61, 177-202.

[53] Visona, D., Lombardo, B., 2002. Two-mica and tourmaline leucogra-718nites from the Everest-Makalu region (Nepal-Tibet). Himalayan719leu cogranite genesis by isobaric heating? Lithos. 62, 125-150.

[54] Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters. 64, 295-304. DOI: https://doi.org/10.1016/0012-821X(83)90211-X.

[55] Watson, E.B., Harrison, T.M., 1984. Accessory phases and the geochemical evolution of crustal magmas. Physics of the Earth and Planetary Interiors. 35, 19-30. DOI: https://doi.org/10.1016/0031-9201(84)90031-1.

[56] Winkler, H.G.F., 1974. Petrogenesis of metamorphic rocks. Springer-Verlag: New York. pp. 320.

[57] James, R.S., Hamilton, D.L., 1969. Phase relation in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8 at 1-kilobar water vapour pressure. Contributions to Mineralogy & Petrology. 21, 111-141.

[58] Wollenberg, H.A., Smit, A.R., 1987. Radiogenic heat production of crustal rocks: an assessment based on geochemical data. Geophysical Research Letters. 14(3), 295-298.

[59] Artemieva, I.M., Thybo, H., Jakobsen, K., et al., 2017. Heat production in granitic rocks: Global analysis based on a new data compilation. GRAN ITE2017, Earth-Science Reviews. 172, 1-26.

[60] Pearce, J.A., Nigel, B.W.H., Andrew, G.T., 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology. 25, 956-983.

[61] Ghose, N.C., 1992. Chhotanagpur gneiss-granulite complex, eastern India: Present status and future prospect. Indian Journal of Geology. 64(1), 100-121.

[62] Emslie, R.F., 1978. Anorthosite massif, Rapakivi granites and late Proterozoic rifting od North America. Precambrian Research. 7, 61-98.

[63] Dewey, J.F., Bruke, K.C.A., 1973. Tibetian, Vari scan and Precambrian basement reactivation products of continental collision. Journal of Geology. 81, 683-692.

[64] Gupta, J.N., Pandey, B.K., Prasad, R.N., et al., 1988. Rb-Sr geochronology of some granitic rocks around Arbail and age of uraniferous aerinite and quartz pebble conglomerates of western Karnataka. Geological Society of India Memoir. 9, 101-108.

[65] Armstrong, R.L., 1968. A model for the evolution of strontium and lead isotopes in a dynamic earth. Reviews of Geophysics. 6(2), 175-199.

[66] Patterson, C., Tatsumoto, M., 1964. The significance of lead isotopes in detrital feldspar with respect to chemical differentiation within the earth’s mantle. Geochimica et Cosmochimica Acta. 28, 1-22.

[67] Stueber, A.M., Ramamurthy, V., 1966. Strontium isotope and alkali element abundances in ultramafic rocks. Geochimica et Cosmochimica Acta. 28, 1243-1259.

[68] Faure, G., Hurley, P.M., 1963. The isotopic composition of strontium in oceanic and continental basalts: Application to the origin of igneous rocks. Journal of Petrology. 4, 31-50.

[69] Hurley, P.M., Hughes, H., Faure, G., et al., 1962. Radiogenic strontium-87 model of continent formation. Journal of Geophysical Research. 67, 5316.

[70] Davies, R.D., Allsopp, H.L., Erlank, A.J., et al., 1970. Sr-isotopic studies on various layered intrusions in southern Africa. Special Publication of the Geological Society of South Africa. 1, 576-593.

[71] Moorbath, S., 1975. Evolution of Precambrian crust from strontium isotopic evidences. Nature. 254, 395-398.

[72] Holmes, A., Leland, W.T., Nier, A.O., 1950. Age of uranite from a pegmatite near Singar Gaya district. India American Mineralogist. 35(1-2), 19-28.

[73] Holmes, A., 1955. Dating the Precambrian of pen insular India and Cylon. Geological Association of Canada. 7, 81-106.

[74] Mandal, P., 2016. Shear-wave splitting in Eastern Indian Shield: Detection of a Pan-African suture separating Archean and Meso-Proterozoic terrains. Precambrian Research. 275, 278-285. DOI: https://doi.org/10.1016/j.precamres.2016.01.019.

[75] Pandey, B.K., Chabria, T., Gupta, J.N., 1995. Geochronological characterisation of the proterozoic terrains of peninsular India: Relevance to the first-order target selection for uranium exploration. Exploration & Research for Atomic Minerals. 8, 187-213.

[76] Pandey, D., Sinha, K.K., Sharma, P.K., 2004. Jhir gadandi Pluton—A Lower Proterozoic, A-Type, Anorogenic, Within—Plate Granite from the son-Narmada Lineament, Sonbhadra district, Uttar Pradesh. Precambrian Crustal Evolution and Metal logenesis with Special Reference to Central India. Hindustan Publishing Corporation (India): New Delhi.

[77] Sastry, D.V.L.N., Krishna, V., Latha, A. (editors), et al., 2017. Rb-Sr and Pb-Pb geochronological studies on the granites of Jaurahi Sonbhadra District UP. National Symposium on Emerging Trends in Geosciences, Mineral Exploration, and Environmental Sciences for Sustainable Developments; 2017 Dec 20-21; Hyderabad, India. India: Indian society of Applied geochemists and Atomic Minerals Directorate for Exploration and Research. p. 49-50.

[78] Sarkar, A., Bodas, M., Kundu, H.K. (editors), et al., 1998. Geochronology and geochemistry of Meso proterozoic intrusive plutonites from the eastern segment of the Mahakoshal green stone belt, central India. Proceedings of International Seminar on “Precambrian crust in eastern and central India”; Bhubaneswar. p. 82-85.

[79] Pandey, B.K., Krishna, V., Chabria, T. (editors), 1998. An overview of the geochronological data on the rocks of Chhotanagpur gneiss-granulite complex and adjoining sedimentary sequences, Eastern and Central India. Abstract Volume, International Seminar on “Precambrian crust in eastern and central India”; Bhubaneswar. pp. 131-135.

[80] Ray Barman, T., Bishui, P.K., Mukhopadhyay, K., et al., 1994. Rb-Sr geochronology of the high-grade rocks from Purulia, West Bengal, and Jamua-Dumka sector, Bihar. Indian Minerals. 48, 45-60.

[81] Karmakar, S., Bose, S., Sarbadhikari, A.B., et al., 2011. Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: Evidence for 990-940Ma tectonothermal event(s) at the eastern India cratonic fringe zone. Journal of Asian Earth Sciences. 41(1), 69-88. DOI: https://doi.org/10.1016/j.jseaes.2010.12.006.

[82] Jain, S.C., Nair, K.K.K., Yedekar, D.B., 1995. Tectonic evolution of the Son-Narmada-Tapti Lineament zone in Geoscientific studies of Son-Narmada-Tapti Lineament zone, Project CRUMENSO NATA. Geological Survey of India. 10, 333-371.

[83] Bora, S., Kumar, S., Yi, K., et al., 2013. Geochemistry and U-Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. Journal of Asian Earth Sciences. 70-71, 99-114.

[84] Bora, S., Kumar, S., 2015. Geochemistry of biotites and host granitoid plutons from the Proterozoic Ma hakoshal Belt, central India Tectonic Zone: Implication for nature and tectonic setting of magmatism. International Geology Review. 57(11-12), 1686-1706. DOI: https://doi.org/10.1080/00206814.2015.1032372.

[85] Mallik, A.K., Gupta, S.N., Ray Barman, T., 1991. Dating of early Precambrian granite–greenstone complex of the Eastern Indian Precambrian shield with special reference to the Chotanagpur granite gneiss complex. Records of the Geological Survey of India. 124, 20-21.

[86] Pandey, B.K., Gupta, J.N., Lal, Y., 1986. Whole rock and mineral isochron ages for the granites from Bihar Mica Belt of Hazaribagh Bihar, India. Indian Journal of Earth Sciences. 12(2&3), 157-162.

[87] Pandey B.K., Upadhyady, L., Sinha, K.K., 1986. Geochronology of Jajawal-Binda-Nagnaha granit oids in relation to uranium mineralization. Indian Journal of Earth Sciences. 12(2&3), 163-168.

[88] Vinogradov, A., Tugarinov, A., Zhykov, C., et al., 1964. Geochronology of Indian Precambrian, 22nd Session of the International Geological Congress. X, 553-567.

[89] Holmes, A., Leland, W.T., Nier, A.O., 1950. Age of uranite from a pegmatite near Singar Gaya district. India American Mineralogist. 35(1-2), 19-28.

[90] Nandi, S.K., Sen, D.N., 1950. Investigation on Indian radioactive minerals, II, Allanite. Journal of Vacuum Science & Technology. 9, 124-128.

[91] Sarkar, T.C., 1941. The lead ratio of a crystal of monazite from the Gaya district Bihar, India. Proceedings of the Indian Academy of Sciences Section A. 13, 245-248.

[92] Krishnan, M.S., 1953. Structural and tectonic history of India. Geological Survey Memoir. 81, 1-93.

[93] Krishna, V., Sastry, D.V.L.N., Pandey, B.K. (editors), et al., 2003. U-Pb and Pb-Pb ages on columbite-tantalite minerals from pegmatites of Bihar Mica Belt, Jharkhand, India. Silver Jubilee Symp., Nat. Inst. Oceanography, Goa. India: Indian Soc. Mass Spec. p. 650-653.

[94] Lal, N., Saini, H.S., Nagpaul, K.K., et al., 1976. Tectonic and cooling history of the Bihar Mica Belt, India, as revealed by fission-track analysis. Tectonophysics. 34(3-4), 163-180. DOI: https://doi.org/10.1016/0040-1951(76)90094-9.

[95] Aswathanarayana, U., 1956. Absolute ages of the Archaean orogenic cycles of India. American Journal of Science. 254(1), 19-31. DOI: https://doi.org/10.2475/ajs.254.1.19.

[96] Baidya, T.K., Chakravarthy, P.S., 1988. Mineral isation in Belamu-Jaipur sector of northwestern Purulia district, West Bengal. Memoir-Geological Society of India. 8, 147-165.

[97] Singh, Y., Krishna, V., 2009. Rb-Sr geochronology and petrogenesis of granitoids from the chhotanagpur granite gneiss complex of Raikera-Kunkuri Region, Central India. Journal of the Geological Society of India. 74, 200-208.

[98] Ghose, N.C., Smakin, B.M., Smirnov, V.N., 1973. Some geochronological observations on the precambrians of Chhotangpur Bihar, India. Geological Magazine. 110, 477-482.

[99] Sarkar, A. (editor), 1974. K-Ar age of Mahuadanr rhyodacite: Evidence for late Triassic effusive activity in Eastern India. 9th International Gondwana Symposium, Hyderabad. p. 687-695.

[100] Sarkar, A., Paul, D.K., Balasubrahmanyan, M.N., et al., 1980. Lamprophyres from the Indian Gondwanas—K–Ar ages and chemistry. Journal Geological Society India. 21, 188-193.

[101] Baksi, A.K., 1995. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India. Chemical Geology. 121(1-4), 73-90. DOI: https://doi.org/10.1016/0009-2541(94)00124-q.

[102] Sarkar, A., Datta, A.K., Poddar, B.C., et al., 1996. Geochronological studies of Mesozoic igneous rocks of eastern India. Journal of Southeast Asian Earth sciences. 13, 77-81.

[103] Eriksson, P.G., Mazumder, R., Catuneanu, O., et al., 2006. Precambrian continental freeboard and geological evolution: A time perspective. Earth-Science Reviews. 79, 165-204.

[104] Lubnina, N.V., Slabunov, A.I., 2011. Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data. Mos cow University Geology Bulletin. 66, 242-249. DOI: https://doi.org/10.3103/S0145875211040077.

[105] Mints, M.V., Eriksson, P.G., 2016. Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time. Geodynamics & Tectonophysics. 7(2), 173-232. DOI: https://doi.org/10.5800/GT-2016-7-2-0203.

[106] Zhang, S., Zheng, X.L., Evans, D.A.D., et al., 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters. 353-354, 145-155.

[107] Nance, D.R., Murphy, B.J., 2013. Origins of the supercontinent cycle. Geoscience Frontiers. 4(4), 439-448. DOI: https://doi.org/10.1016/j.gsf.2012.12.007.

[108] Meert, J.G., Santhosh, M., 2017. The Columbia supercontinent revisited. Gondwana Research. 50, 67-83.

[109] Evans, D.A.D., Mitchell, R.N., 2011. Assembly and breakup of the core of Paleoproterozoic—Mesopro terozoic supercontinent Nuna. Geology. 39(5), 443-446. DOI: https://doi.org/10.1130/G31654.1.

[110] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, configuration, and break-up history of Rodinia-A synthesis. Precambrian Research. 160(1-2), 179-210. DOI: https://doi.org/10.1016/j.precamres.2007.04.021.

[111] Long, J., Zhang, S., Luo, K., 2019. Cryogenian magmatic activity and early life evolution. Scientific Reports. 9(1). DOI: https://doi.org/10.1038/s41598-019-43177-8.

[112] Dalziel, I.W.D., 1997. Neoproterozoic-Paleozoic Geography and Tectonics: Review, hypothesis, environmental speculation. Geological Society of America Bulletin. 109, 16-42. DOI: https://doi.org/10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2

[113] Dalziel, I.W.D., 2013. Antarctica and supercon tinental evolution: Clues and puzzles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 104, 3-16. DOI: https://doi.org/10.1017/S1755691012000096.

[114] Unrug, R., 2007. Rodinia to Gondwana: The geodynamic map of Gondwana supercontinent assembly. GSA Today. 7(1), 2-6.

[115] Nance, R.D., Murphy, J.B., 2018. Supercontinents and the case for Pannotia. Wilson, R.W., House man, G.A., Mccaffrey, K.J.W., Doré, A.G., Buiter, SJH (editors). Fifty Years of The Wilson Cycle Concept in Plate Tectonics. 470, 1-17. https://www.lyellcollection.org/doi/10.1144/SP470.5.

[116] Kent, R.W., Storey, M., Saunders, A.D., 1992. Large igneous provinces: Sites of plume impact or plume incubation. Geology. 20, 891-894.

Downloads

How to Cite

Dhurandhar, A. P., Khirwal, S., & L.N. Sastry, D. (2023). Petrogenesis and Rb-Sr Isotopic Characteristics of Paleo-Mesoproterozoic Mirgarani Granite Sonbhadra Uttar Pradesh India: Geodynamics Implication for Supercontinent Cycle. Advances in Geological and Geotechnical Engineering Research, 5(1), 57–85. https://doi.org/10.30564/agger.v5i1.5261

Issue

Article Type

Article