Interspecific Variation and Phylogenic Architecture of Pinus densata and the Hybrid of Pinus tabuliformis×Pinus Yunnanensis in the Pinus densata Habitat: an Electrical Impedance Spectra Perspective

Authors

  • Fengxiang Ma School of Sciences, Beijing Forestry University, Beijing 100083, China
  • Xiaoyang Chen College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong 510642, China
  • Yue Li National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing 100083, China

DOI:

https://doi.org/10.30564/jrb.v3i1.2406

Abstract

We evaluated a novel and non-destructive method of the electrical impedance spectroscopy (EIS) to elucidate the genetic and evolutionary relationship of homoploid hybrid conifer of Pinus densata (P.d) and its parental species Pinus tabuliformis (P.t) and Pinus yunnanensis (P.y), as well as the artificial hybrids of the P.t and P.y. Field common garden tests of96 trees sampled from 760 seedlings and 480 EIS records of 1,440 needles assessed the interspecific variation of the P.d, P.t, P.y and the artificial hybrids. We found that (1) EIS at different frequencies diverged significantly among germplasms; P.y was the highest, P.t was the lowest, and their artificial hybrids were within the range of P.t and P.y; (2) maternal species effect of EIS magnitudes in the hybrids and P.d was stronger than the paternal species characteristics; (3)EIS of the artificial hybrid confirmed the mid-parent and partial maternal species characteristics;(4) unified exponential model of EIS for the interspecific and hybrids can be constructed as |Z|=Af -B; (5) cluster analysis for species and hybrid combinations in total corroborated with the previous hybrid model of Pinus densata. Our non-destructive EIS method complemented the previous finding that Pinus densata was originated from P.t and P.y. We conclude that the impedance would be a viable indicator to investigate the interspecific genetic variations of conifers.

Keywords:

Pinus densata; Artificial hybrid; Electrical impedance; Interspecific genetic variation; Homoploid hybrid

References

[1] Mao JF, Wang XR. Distinct niche divergence characterizes the homoploid hybrid speciation of Pinus densata on the Tibetan plateau. The American naturalist, 2011, 177(4): 424-39. Epub 2011/04/05. DOI: https://doi.org/10.1086/658905. PubMed PMID: 21460565.

[2] Ma F, Zhao CM, Milne R, Ji MF, Chen LT, Liu JQ. Enhanced drought-tolerance in the homoploid hybrid species Pinus densata: implication for its habitat divergence from two progenitors. New Phytol., 2010, 185(1): 204-16. DOI: https://doi.org/10.1111/j.1469-8137.2009.03037.x. PubMed PMID: WOS:000272344800020

[3] Wu CL. The taxonomic revision and phytogeographical study of Chinese pines. Acta Phytotaxonomica Sinica 1956, 5(131-163).

[4] Kuan C. Fundamental features of the distribution of Coniferae in Sichuan. Journal of Systematics and Evolution, 1981, 19: 393-407.

[5] Meng JX, Mao JF, Zhao W, Xing FQ, Chen XY, Liu H, et al. Adaptive Differentiation in Seedling Traits in a Hybrid Pine Species Complex, Pinus densata and Its Parental Species, on the Tibetan Plateau. Plos One, 2015, 10(3). DOI: https://doi.org/ARTNe011850110.1371/journal.pone.0118501. PubMed PMID :ISI:000351275700022

[6] Gao DH, Gao Q, Xu HY, Ma F, Zhao CM, Liu JQ. Physiological responses to gradual drought stress in the diploid hybrid Pinus densata and its two parental species. Trees-Struct Funct, 2009;23(4):717-28. DOI: https://doi.org/10.1007/s00468-009-0314-3. PubMed PMID: WOS:000267397100003

[7] Mao JF, Li Y, Wang XR. Empirical assessment of the reproductive fitness components of the hybrid pine Pinus densata on the Tibetan Plateau. Evolutionary Ecology, 2009, 23(3): 447-62. DOI: https://doi.org/10.1007/s10682-008-9244-6. PubMed PMID: ISI:000265788600010

[8] Zhao C, Wang XQ, Yang FS. Mechanisms underlying flower color variation in Asian species of Meconopsis: A preliminary phylogenetic analysis based on chloroplast DNA and anthocyanin biosynthesis genes. Journal of Systematics and Evolution, 2014, 52(2): 125-33. DOI: https://doi.org/10.1111/jse.12071. PubMed PMID: WOS:000332064700001

[9] Van den Driessche R, Cheung K-W. Relationship of stem electrical impedance and water potential of Douglas-fir seedlings to survival after cold storage. Forest Science, 1979, 25(3): 507-17. DOI: https://doi.org/10.1093/forestscience/25.3.507

[10] Glerum C. Vitality Determinations of Tree Tissue with Kilocycle and Megacycle Electrical Impedance. Forest Chron., 1970, 46(1): 63-&. PubMed PMID: ISI:A1970F754700009

[11] Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P. Analysis of the willow root system by electrical impedance spectroscopy. Journal of Experimental Botany, 2011, 62(1): 351-8. PubMed PMID: ISI:000284951900030

[12] Cseresnyes I, Takacs T, Vegh KR, Anton A, Rajkai K. Electrical impedance and capacitance method: A new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. European Journal of Soil Biology, 2013, 54: 25-31. PubMed PMID: ISI: 000313540600004

[13] Repo T, Korhonen A, Laukkanen M, Lehto T, Silvennoinen R. Detecting mycorrhizal colonisation in Scots pine roots using electrical impedance spectra. Biosystems Engineering, 2014, 121: 139-49. PubMed PMID: ISI: 000336112200014

[14] Cermak J, Ulrich R, Stanek Z, Koller J, Aubrecht L.Electrical measurement of tree root absorbing surfaces by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments. Tree Physiol., 2006, 26(9): 1113-21. PubMed PMID: ISI: 000241044300002

[15] Urban J, Bequet R, Mainiero R. Assessing the applicability of the earth impedance method for in situ studies of tree root systems. J Exp Bot., 2011, 62(6): 1857-69. PubMed PMID: ISI: 000288553000011

[16] Repo T, Laukkanen J, Silvennoinen R. Measurement of the tree root growth using electrical impedance spectroscopy. Silva Fenn., 2005, 39(2): 159-66. PubMed PMID: ISI: 000230149400001

[17] Repo T, Korhonen A, Lehto T, Silvennoinen R. Assessment of frost damage in mycorrhizal and non-mycorrhizal roots of Scots pine seedlings using classification analysis of their electrical impedance spectra. Trees, 2016, 30(2): 483-95. DOI: https://doi.org/10.1007/s00468-015-1171-x

[18] OuYang FQ, Wang JH, Li Y. Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New Forests, 2015, 46(1): 91-105. PubMed PMID: ISI: 000347035800006

[19] Huang YJ, Mao JF, Chen ZQ, Meng JX, Xu YL, Duan AA, et al. Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. Journal of Forestry Research, 2016, 27(1): 13-25. PubMed PMID: ISI: 000367520300002

[20] Zhang G, Li YQ, Dong SH. Assessing frost hardiness of Pinus bungeana shoots and needles by electrical impedance spectroscopy with and without freezing tests. J Plant Ecol-Uk, 2010, 3(4): 285-93. PubMed PMID: ISI: 000284502100007

[21] Kocheva KV, Georgiev GI, Kochev VK, Olsovska K, Brestic M. Application of Impedance Spectroscopy and Conductometry for Assessment of Varietal Differences in Wheat. Cereal Research Communications, 2015, 43(4): 579-90. DOI: https://doi.org/10.1556/0806.43.2015.019. PubMed PMID: WOS: 000366404300005

[22] Tong C, Shen L, Lv Y, Wang Z, Wang X, Feng S, et al. Structural mapping: how to study the genetic architecture of a phenotypic trait through its formation mechanism. Briefings in Bioinformatics, 2014, 15(1): 43-53. DOI: https://doi.org/10.1093/bib/bbs067

[23] Xing FQ, Mao JF, Meng JX, Dai JF, Zhao W, Liu H, et al. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 2014, 4(10): 1890-902. PubMed PMID: ISI: 000336491600012

[24] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2016.

[25] Shi M. Principles and applications of electrical impedance spectra. Beijing, China: National Defence Industry Publishing House, 2001.

[26] Wu HX, Ying CC. Geographic pattern of local optimality in natural populations of lodgepole pine. Forest Ecol Manag, 2004, 194(1-3): 177-98. PubMed PMID: ISI: 000221924600015

[27] Hoffman L, DaCosta M, Ebdon JS, Zhao JZ. Effects of drought preconditioning on freezing tolerance of perennial ryegrass. Environ Exp Bot., 2012, 79: 11- 20. PubMed PMID: ISI: 000302592900002

[28] Mancuso S, Nicese FP, Masi E, Azzarello E. Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp. Journal of Horticultural Science & Biotechnology, 2004, 79(4): 627- 32. PubMed PMID: ISI: 000223046800021

Downloads

How to Cite

Ma, F., Chen, X., & Li, Y. (2021). Interspecific Variation and Phylogenic Architecture of Pinus densata and the Hybrid of Pinus tabuliformis×Pinus Yunnanensis in the Pinus densata Habitat: an Electrical Impedance Spectra Perspective. Journal of Botanical Research, 3(1), 1–15. https://doi.org/10.30564/jrb.v3i1.2406

Issue

Article Type

Article