-
28961
-
18486
-
3364
-
1412
-
1270
Effects of Arbuscular Mycorrhizal Fungi on the Physiology and Saponin Synthesis of Paris polyphylla var. yunnanensis at Different Nitrogen Levels
DOI:
https://doi.org/10.30564/jbr.v5i3.5518Abstract
Arbuscular mycorrhizal fungi (AMF) are important members of the plant microbiome and affect the uptake and transfer of mineral elements by forming a symbiotic relationship with plant roots. Nitrogen (N), as an important mineral element, can directly affect plant growth and development at different N levels. It has been confirmed that inoculation with AMF can improve the efficiency of N utilization by plants. However, there are still fewer reports on the dynamic relationship between arbuscular mycorrhizal and plant secondary metabolites at different nitrogen levels. In this experiment, the physiological indexes and genes related to saponin synthesis were determined by applying different concentration gradients of nitrogen to the medicinal plant P. polyphylla var. yunnanensis infested by AMF as the test material. It was found that nitrogen addition increased the biomass, chlorophyll content, and nutrient content of above- and below-ground plant parts and increased the content of saponin content of P. polyphylla var. yunnanensis to some extent, but AMF inoculation increased the saponin content of P. polyphylla var. yunnanensis more significantly. AMF inoculation also promoted the expression of genes related to the saponin synthesis pathway, including 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), squalene epoxidase 1 (SE1), and cycloartenol synthase (CAS), which is in according with the accumulation of saponin in plants. It also may increase the saponin content of AMF plants by altering the expression of P450s and UGTs related to saponin synthesis.
Keywords:
Nitrogen; Arbuscular mycorrhizal fungi; Saponin; P. polyphylla var. yunnanensisReferences
[1] Guo, J.H., Liu, X.J., Zhang, Y., et al., 2010. Significant acidification in major Chinese croplands. Science. 327(5968), 1008-1010. DOI: https://doi.org/10.1126/science.1182570
[2] Raza, S., Miao, N., Wang, P., et al., 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology. 26(6), 3738-3751. DOI: https://doi.org/10.1111/gcb.15101
[3] Ramirez, K.S., Craine, J.M., Fierer, N., 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology. 18(6), 1918-1927. DOI: https://doi.org/10.1111/j.1365-2486.2012.02639.x
[4] Walters, D.R., Bingham, I.J., 2007. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Annals of Applied Biology. 151(3), 307-324. DOI: https://doi.org/10.1111/j.1744-7348.2007.00176.x
[5] Hestrin, R., Hammer, E.C., Mueller, C.W., et al., 2019. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology. 2(1), 233. DOI: https://doi.org/10.1038/s42003-019-0481-8
[6] Müller, L.M., Harrison, M.J., 2019. Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology. 50, 132-139. DOI: https://doi.org/10.1016/j.pbi.2019.05.004
[7] Smith, S.E., Smith, F.A., Jakobsen, I., 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist. 162(2), 511-524. DOI: https://doi.org/10.1111/j.1469-8137.2004.01039.x
[8] Johansen, A., Jakobsen, I., Jensen, E.S., 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biology and Fertility of Soils. 16, 66-70. DOI: https://doi.org/10.1007/bf00336518
[9] Hodge, A., Campbell, C.D., Fitter, A.H., 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 413(6853), 297-299. DOI: https://doi.org/10.1038/35095041
[10] Koegel, S., Ait Lahmidi, N., Arnould, C., et al., 2013. The family of ammonium transporters (AMT) in s orghum bicolor: Two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytologist. 198(3), 853-865. DOI: https://doi.org/10.1111/nph.12199
[11] Chen, A., Gu, M., Wang, S., et al., 2018. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Seminars in Cell & Developmental Biology. 74, 80-88. DOI: https://doi.org/10.1016/j.semcdb.2017.06.015
[12] Bona, E., Lingua, G., Manassero, P., et al., 2015. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza. 25, 181-193. DOI: https://doi.org/10.1007/s00572-014-0599-y
[13] Bills, G.F., Gloer, J.B., 2017. Biologically active secondary metabolites from the fungi. The Fungal Kingdom. 4(6), 1087-1119. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0009-2016
[14] Boby, V.U., Bagyaraj, D.J., 2003. Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculants. World Journal of Microbiology and Biotechnology. 19(2), 175-180. DOI: https://doi.org/10.1023/A:1023238908028
[15] Yu, Y., Yu, T., Wang, Y., et al., 2010. Effect of inoculation time on camptothecin content in arbuscular mycorrhizal Camptotheca acuminata seedlings. Chinese Journal of Plant Ecology. 34(6), 687. DOI: https://doi.org/10.3724/SP.J.1142.2010.40521
[16] Mandal, A., Mandal, S., Park, M.H., 2014. Genome-wide analyses and functional classification of proline repeat-rich proteins: Potential role of eIF5A in eukaryotic evolution. PloS One. 9(11), e111800. DOI: https://doi.org/10.1371/journal.pone.0111800
[17] Mandal, S., Upadhyay, S., Singh, V.P., et al., 2015. Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiology and Biochemistry. 89, 100-106. DOI: https://doi.org/10.1016/j.plaphy.2015.02.010
[18] Xie, W., Hao, Z., Zhou, X., et al., 2018. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza. 28, 285-300. DOI: https://doi.org/10.1007/s00572-018-0827-y
[19] Chaudhary, V., Kapoor, R., Bhatnagar, A.K., 2008. Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Applied Soil Ecology. 40(1), 174-181. DOI: https://doi.org/10.1016/j.apsoil.2008.04.003
[20] Zeng, Y., Guo, L.P., Chen, B.D., et al., 2013. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: Current research status and prospectives. Mycorrhiza. 23, 253-265. DOI: https://doi.org/10.1007/s00572-013-0484-0
[21] Weng, W., Yan, J., Zhou, M., et al., 2022. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms. 10(7), 1266. DOI: https://doi.org/10.3390/microorganisms10071266
[22] Tsiokanos, E., Cartabia, A., Tsafantakis, N., et al., 2022. The metabolic profile of Anchusa officinalis L. differs according to its associated arbuscular mycorrhizal fungi. Metabolites. 12(7), 573. DOI: https://doi.org/10.3390/metabo12070573
[23] Toussaint, J.P., Smith, F.A., Smith, S.E., 2007. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza. 17(4), 291-297. DOI: https://doi.org/10.1007/s00572-006-0104-3
[24] Zhao, Y., Cartabia, A., Lalaymia, I., et al., 2022. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza. 32(3-4), 221-256. DOI: https://doi.org/10.1007/s00572-022-01079-0
[25] Wu, X., Wang, L., Wang, H., et al., 2012. Steroidal saponins from Paris polyphylla var. yunnanensis. Phytochemistry. 81, 133-143. DOI: https://doi.org/10.1016/j.phytochem.2012.05.034
[26] Upadhyay, S., Jeena, G.S., Shukla, R.K., 2018. Recent advances in steroidal saponins biosynthesis and in vitro production. Planta. 248(3), 519-544. DOI: https://doi.org/10.1007/s00425-018-2911-0
[27] Gao, X., Zhang, X., Chen, W., et al., 2020. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves. Phytochemistry. 178, 112460. DOI: https://doi.org/10.1016/j.phytochem.2020.112460
[28] Trouvelot, A., Kough, J.L., Gianinazzi-Pearson, V. (editors), 1985. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. Physiological and genetical aspects of mycorrhizae: Proceedings of the 1st european symposium on mycorrhizae (French) [Measurement of the VA mycorrhization rate of a root system. Physiological and genetical aspects of mycorrhizae: Proceedings of the 1st european symposium on mycorrhizae]. European symposium on mycorrhizae (1; Dijon 1985-07-01); 1985 1-5 July; Dijon. Paris:INRA, Paris. p. 217-221.
[29] Sartory, D.P., Grobbelaar, J.U., 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia. 114, 177-187. DOI: https://doi.org/10.1007/BF00031869
[30] Li, T., Sun, Y., Ruan, Y., et al., 2016. Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress. Mycorrhiza. 26, 879-893. DOI: https://doi.org/10.1007/s00572-016-0723-2
[31] Bates, L.S., Waldren, R.A., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207. DOI: https://doi.org/10.1007/bf00018060
[32] Conesa, A., Götz, S., García-Gómez, J.M., et al., 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21(18), 3674-3676. DOI: https://doi.org/10.1093/bioinformatics/bti610
[33] Lanfranco, L., Fiorilli, V., Gutjahr, C., 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist. 220(4), 1031-1046. DOI: https://doi.org/10.1111/nph.15230
[34] Zhou, Z., Wang, C., Zheng, M., et al., 2017. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry. 115, 433-441. DOI: https://doi.org/10.1016/j.soilbio.2017.09.015
[35] Wang, L., Chen, X., Du, Y., et al., 2022. Nutrients regulate the effects of arbuscular mycorrhizal fungi on the growth and reproduction of cherry tomato. Frontiers in Microbiology. 13, 843010. DOI: https://doi.org/10.3389/fmicb.2022.843010
[36] Zhang, S., Lehmann, A., Zheng, W., et al., 2019. Arbuscular mycorrhizal fungi increase grain yields: A meta‐analysis. New Phytologist. 222(1), 543-555. DOI: https://doi.org/10.1111/nph.15570
[37] Ma, N., Yokoyama, K., Marumoto, T., 2007. Effect of peat on mycorrhizal colonization and effectiveness of the arbuscular mycorrhizal fungus Gigaspora margarita. Soil Science and Plant Nutrition. 53(6), 744-752. DOI: https://doi.org/10.1111/j.1747-0765.2007.00204.x
[38] Clark, R.Á., Zeto, S.K., 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition. 23(7), 867-902. DOI: https://doi.org/10.1080/01904160009382068
[39] Foo, E., Ross, J.J., Jones, W.T., et al., 2013. Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany. 111(5), 769-779. DOI: https://doi.org/10.1093/aob/mct041
[40] Averill, C., Bhatnagar, J.M., Dietze, M.C., et al., 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proceedings of the National Academy of Sciences. 116(46), 23163-23168. DOI: https://doi.org/10.1073/pnas.1906655116
[41] Wang, W., Shi, J., Xie, Q., et al., 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant. 10(9), 1147-1158. DOI: https://doi.org/10.1016/j.molp.2017.07.012
[42] Kobae, Y., Tamura, Y., Takai, S., et al., 2010. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant and Cell Physiology. 51(9), 1411-1415. DOI: https://doi.org/10.1093/pcp/pcq099
[43] Wang, S., Chen, A., Xie, K., et al., 2020. Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proceedings of the National Academy of Sciences. 117(28), 16649-16659. DOI: https://doi.org/10.1073/pnas.2000926117
[44] Dang, H., Zhang, T., Wang, Z., et al., 2021. Succession of endophytic fungi and arbuscular mycorrhizal fungi associated with the growth of plant and their correlation with secondary metabolites in the roots of plants. BMC Plant Biology. 21, 1-16. DOI: https://doi.org/10.1186/s12870-021-02942-6
[45] Sharma, E., Anand, G., Kapoor, R., 2017. Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany. 119(5), 791-801. DOI: https://doi.org/10.1093/aob/mcw263
[46] Cartabia, A., Tsiokanos, E., Tsafantakis, N., et al., 2021. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 modulates metabolites production of Anchusa officinalis L. under semi-hydroponic cultivation. Frontiers in Plant Science. 12, 724352. DOI: https://doi.org/10.3389/fpls.2021.724352
[47] Pedone-Bonfim, M.V.L., da Silva, D.K.A., da Silva-Batista, A.R., et al., 2018. Mycorrhizal inoculation as an alternative for the sustainable production of Mimosa tenuiflora seedlings with improved growth and secondary compounds content. Fungal Biology. 122(9), 918-927. DOI: https://doi.org/10.1016/j.funbio.2018.05.009
[48] McCarthy, M.C., Enquist, B.J., 2007. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology. 21(4), 713-720. DOI: https://doi.org/10.1111/j.1365-2435.2007.01276.x
[49] Enfissi, E.M., Fraser, P.D., Lois, L.M., et al., 2005. Metabolic engineering of the mevalonate and non‐mevalonate isopentenyl diphosphate‐forming pathways for the production of health‐promoting isoprenoids in tomato. Plant Biotechnology Journal. 3(1), 17-27. DOI: https://doi.org/10.1111/j.1467-7652.2004.00091.x
[50] Gupta, P., Goel, R., Agarwal, A.V., et al., 2015. Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Scientific Reports. 5(1), 18611. DOI: https://doi.org/10.1038/srep18611
[51] Thimmappa, R., Geisler, K., Louveau, T., et al., 2014. Triterpene biosynthesis in plants. Annual Review of Plant Biology. 65, 225-257. DOI: https://doi.org/10.1146/annurev-arplant-050312-120229
[52] Christ, B., Xu, C., Xu, M., et al., 2019. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nature Communications. 10(1), 3206. DOI: https://doi.org/10.1038/s41467-019-11286-7
[53] Bak, S., Kahn, R.A., Olsen, C.E., et al., 1997. Cloning and expression in Escherichia coli of the obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14α-demethylases (CYP51) from fungi and mammals. The Plant Journal. 11(2), 191-201. DOI: https://doi.org/10.1046/j.1365-313x.1997.11020191.x
[54] Liao, P., Chen, X.J., Wang, M.F., et al., 2018. Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE1 in transgenic tomato. Plant Biotechnology Journal. 16(3), 784-796. DOI: https://doi.org/10.1111/pbi.12828
[55] Piironen, V., Lindsay, D.G., Miettinen, T.A., et al., 2000. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture. 80(7), 939-966. DOI: https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<939::AID-JSFA644>3.0.CO;2-C
Downloads
How to Cite
Issue
Article Type
License
Copyright © 2023 Author(s)
This is an open access article under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.