Volatile Constituents of Leaves of Trifolium alexandrinum

Authors

  • Faiza Faiz School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Azeem Intisar School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Ahsan Sharif School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Mateen Hedar School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Arooj Ramzan School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Tehzeeb Sawaira School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
  • Fiaz Kausar School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan

DOI:

https://doi.org/10.30564/jbr.v4i1.4347

Abstract

This study presents the volatile constituents from leaves of Trifolium alexandrinum from Pakistan. The dried leaves were subjected to hydrodistillation for extraction and extracted volatile oil was subsequently characterized by gas chromatography-mass spectrometry technique. A total of 22 compounds were identified where the most dominant constituents were: phytol (46.00%), palmitic acid (9.26%), phytol acetate (6.44%), and linolenic acid (3.47%). Most of these are well-known constituents to exhibit antibacterial, antioxidant, antitumor, and anti-inflammatory activities.

Keywords:

Trifolium alexandrinum, Berseem, Phytol, Palmitic acid, Volatile oil, Bioactive properties

References

[1] Mojtaba, T., et al., 2011. In vitro antibacterial and antifungal activity of Salvia multicaulis. Journal of Essential oil bearing plants. 14(2), 255-259. DOI: https://doi.org/10.1080/0972060X.2011.10643930

[2] Rozin, P., et al., 2004. Preference for natural: instrumental and ideational/moral motivations, and the contrast between foods and medicines. Appetite. 43(2), 147-154. DOI:https://doi.org/10.1016/j.appet.2004.03.005

[3] Bagamboula, C., Uyttendaele, M., Debevere, J., 2004. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food microbiology. 21(1), 33-42. DOI:https://doi.org/10.1016/S0740-0020(03)00046-7

[4] Kausar, F., et al., 2020. Volatile Composition and Antibacterial Activity of Leaves of Chorisia speciosa. Journal of the Mexican Chemical Society. 64(4), 339-348. DOI:https://doi.org/10.29356/jmcs.v64i4.1440

[5] Tahir, H., et al., 2020. Essential oil composition and antibacterial activity of Canarium strictum Roxb. resin. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. DOI:https://doi.org/10.1080/11263504.2020.1869114

[6] Bano, S., et al., 2020. Comparative analysis of oil composition and antibacterial activity of aerial parts of Terminalia arjuna (Roxb.). Natural product research. 34(9), 1311-1314. DOI:https://doi.org/10.1080/14786419.2018.1557656

[7] Bugti, G.A., Shah, F., Rehman, S.U., 2016. Phenology of Coccinellid predators in berseem (Trifolium alexandrinum).

[8] Sabudak, T., Guler, N., Trifolium, L., 2009. A review on its phytochemical and pharmacological profile. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 23(3), 439-446. DOI:https://doi.org/10.1002/ptr.2709

[9] Khan, A.V., et al., 2012. Antibacterial activity of leaves extracts of Trifolium alexandrinum Linn. against pathogenic bacteria causing tropical diseases. Asian Pacific journal of tropical biomedicine. 2(3), 189-194. DOI:https://doi.org/10.1016/S2221-1691(12)60040-9

[10] Sakeran, M.I., et al., 2014. Abrogation by Trifolium alexandrinum root extract on hepatotoxicity induced by acetaminophen in rats. Redox Report. 19(1), 26-33. DOI:https://doi.org/10.1179/1351000213Y.0000000068

[11] Ali, H., Naseer, M., Sajad, M.A., 2012. Phytoremediation of heavy metals by Trifolium alexandrinum. International Journal of Environmental Sciences. 2(3), 1459.

[12] Helmi, R., et al., 1968. Preliminary report on the hypoglycaemic effect of Trifolium alexandrinum and Lupinus termis in animal and man. The Journal of the Egyptian Medical Association. 52(7), 538-551.

[13] Mohamed, K.M., et al., 1999. Megastigmane glycosides from seeds of Trifoliumalexandrinum. Phytochemistry. 50(5), 859-862. DOI:https://doi.org/10.1016/S0031-9422(98)00603-7

[14] Kolodziejczyk-Czepas, J., 2016. Trifolium species-the latest findings on chemical profile, ethnomedicinal use and pharmacological properties. Journal of Pharmacy and Pharmacology. 68(7), 845-861. DOI:https://doi.org/10.1111/jphp.12568

[15] https://www.feedipedia.org/node/248, B.T.a.

[16] Kolodziejczyk-Czepas, J., 2012. Trifolium species-derived substances and extracts—Biological activity and prospects for medicinal applications. Journal of ethnopharmacology. 143(1), 14-23. DOI: https://doi.org/10.1016/j.jep.2012.06.048

[17] Sabudak, T., et al., 2008. Antiinflammatory and antioxidant activities of Trifolium resupinatum var. microcephalum extracts.

[18] Khan, S.W., Khatoon, S., 2008. Ethnobotanical studies on some useful herbs of Haramosh and Bugrote valleys in Gilgit, northern areas of Pakistan. Pakistan Journal of Botany. 40(1), 43.

[19] Menković, N., et al., 2011. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). Journal of ethnopharmacology. 133(1), 97-107. DOI:https://doi.org/10.1016/j.jep.2010.09.008

[20] Barros, L., et al., 2010. In vitro antioxidant properties and characterization in nutrients and phytochemicals of six medicinal plants from the Portuguese folk medicine. Industrial Crops and Products. 32(3), 572- 579. DOI:https://doi.org/10.1016/j.indcrop.2010.07.012

[21] Tham, D.M., Gardner, C.D., Haskell, W.L., 1998. Potential health benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and mechanistic evidence. The Journal of Clinical Endocrinology & Metabolism. 83(7), 2223-2235. DOI:https://doi.org/10.1210/jcem.83.7.4752

[22] de Moraes, J., et al., 2014. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS neglected tropical diseases. 8(1), e2617. DOI:https://doi.org/10.1371/journal.pntd.0002617

[23] Inoue, Y., et al., 2005. Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy. 49(5), 1770-1774. DOI:https://doi.org/10.1128/AAC.49.5.1770-1774.2005

[24] Santos, C.C.d.M.P., et al., 2013. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neuroscience Journal. DOI:http://dx.doi.org/10.1155/2013/949452

[25] Ryu, K.R., et al., 2011. Anti-scratching behavioral effect of the essential oil and phytol isolated from Artemisia princeps Pamp. in mice. Planta medica. 77(01), 22-26. DOI:http://doi.org/10.1055/s-0030-1250119

[26] Silva, R.O., et al., 2014. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundamental & clinical pharmacology. 28(4), 455-464. DOI:https://doi.org/10.1111/fcp.12049

[27] Pejin, B., et al., 2015. In vitro anti-quorum sensing activity of phytol. Natural product research. 29(4), 374-377. DOI:https://doi.org/10.1080/14786419.2014.945088

[28] Pejin, B., Kojic, V., Bogdanovic, G., 2014. An insight into the cytotoxic activity of phytol at in vitro conditions. Natural product research. 28(22), 2053-2056. DOI:https://doi.org/10.1080/14786419.2014.921686

[29] Kim, K., et al., 1993. Antitumor activity of phytol identified from perilla leaf and its augmentative effect on cellular immune response. Korean J Nutr. 26(26), 379-389.

[30] Lim, S.Y., et al., 2006. Phytol-based novel adjuvants in vaccine formulation: 1. assessment of safety and efficacy during stimulation of humoral and cell-mediated immune responses. Journal of immune based therapies and vaccines. 4(1), 6.

[31] Costa, J., et al., 2012. Anticonvulsant effect of phytol in a pilocarpine model in mice. Neuroscience letters. 523(2), 115-118. DOI:https://doi.org/10.1016/j.neulet.2012.06.055

[32] Sermakkani, M., Thangapandian, V., 2012. GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res. 5(2), 90-94.

[33] Rajab, M.S., et al., 1998. Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure-activity study. Planta medica. 64(01), 2-4. DOI:http://doi.org/10.1055/s-2006-957354

[34] Farid, M.M., et al., 2015. Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss. Asian Pacific journal of tropical biomedicine. 5(11), 944-947. DOI:https://doi.org/10.1016/j.apjtb.2015.07.019

[35] Harada, H., et al., 2002. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer research. 22(5), 2587- 2590.

[36] Aparna, V., et al., 2012. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical biology & drug design. 80(3), 434-439. DOI:https://doi.org/10.1111/j.1747-0285.2012.01418.x

[37] Schübel, R., et al., 2017. Dietary essential α-linolenic acid and linoleic acid differentially modulate TNFα-induced NFκB activity in FADS2-deficient HEK293 cells. International Journal of Food Sciences and Nutrition. 68(5), 553-559. DOI:https://doi.org/10.1080/09637486.2016.1265918

[38] Jalalvand, A.R., et al., 2019. Chemical characterization and antioxidant, cytotoxic, antibacterial, and antifungal properties of ethanolic extract of Allium Saralicum RM Fritsch leaves rich in linolenic acid, methyl ester. Journal of Photochemistry and Photobiology B: Biology. 192, 103-112. DOI:https://doi.org/10.1016/j.jphotobiol.2019.01.017

[39] Pongprayoon, U., et al., 1992. Antispasmodic activity of β-damascenone and E-phytol isolated from Ipomoea pes-caprae. Planta medica. 58(01), 19-21. DOI:http://doi.org/10.1055/s-2006-961381

[40] Carradori, S., et al., 2016. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. Journal of enzyme inhibition and medicinal chemistry. 31(sup2), 189-193. DOI:https://doi.org/10.1080/14756366.2016.1180596

[41] Ansari, M., Emami, S., 2016. β-Ionone and its analogs as promising anticancer agents. European journal of medicinal chemistry. 123, 141-154. DOI:https://doi.org/10.1016/j.ejmech.2016.07.037

[42] Ferreira, L.A., et al., 1992. Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae). Toxicon. 30(10), 1211-1218.DOI:https://doi.org/10.1016/0041-0101(92)90437-A

[43] de Oliveira, T.M., et al., 2015. Evaluation of p-cymene, a natural antioxidant. Pharmaceutical biology. 53(3), 423-428. DOI:https://doi.org/10.3109/13880209.2014.923003

[44] Pansanit, A., Pripdeevech, P., 2018. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology. 9(4), 264-272. DOI:https://doi.org/10.1080/21501203.2018.1481154

[45] Choi, J.S., et al., 2013. The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens. Journal of Environmental Biology. 34(4), 673.

[46] Das, U., 2006. Biological significance of essential fatty acids. Journal-Association Of Physicians of India. 54(R), 309.

[47] Aziz, P., et al., 2020. Constituents and antibacterial activity of leaf essential oil of Plectranthus scutellarioides. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. DOI:http://doi.org/10.1080/11263504.2020.1837279

Downloads

How to Cite

Faiz, F., Intisar, A., Sharif, A., Hedar, M., Ramzan, A., Sawaira, T., & Kausar, F. (2022). Volatile Constituents of Leaves of Trifolium alexandrinum. Journal of Botanical Research, 4(1), 20–27. https://doi.org/10.30564/jbr.v4i1.4347

Issue

Article Type

Articles